AP[®] PHYSICS C: MECHANICS 2015 SCORING GUIDELINES

Question 2

15 points total		Distribution of points
(a)	1 point	
	Writing an equation to solve for the speed when the dart is at its maximum height $v = v_x = v_0(\cos\theta)$ $v = (10 \text{ m/s})(\cos 30^\circ)$ For a correct answer v = 8.7 m/s	1 point
(b)	2 points	
	Writing an equation to solve for time using motion in the vertical direction $v_y = v_{y0} + a_y t$ $0 = (10 \text{ m/s})(\sin 30) + (-9.8 \text{ m/s}^2)t$	
	For a correct value for the time $t = 0.51$ s (or $t = 0.50$ s if using $g = 10$ m/s ²)	1 point
	For substituting into an equation for the horizontal motion consistent with the speed from part (a), or for determining the correct answer	1 point
	$x = v_x t$ x = (8.7 m/s)(0.51 s)	
	x = (3.7 m/s)(0.31 s) x = 4.4 m	
(C)	3 points	
	For a correct expression of conservation of momentum	1 point
	$p_i = p_f$	
	For a correct expression that represents a totally inelastic collision between the dart and the block	1 point
	$m_1 v_{1i} = (m_1 + m_2) v_f$	
	$(0.020 \text{ kg})(8.66 \text{ m/s}) = (0.020 \text{ kg} + 0.10 \text{ kg})v_f$	
	For an answer consistent with the speed from part (a) and correct mass substitutions $v = 1.4 \text{ m/s}$	1 point

AP[®] PHYSICS C: MECHANICS 2015 SCORING GUIDELINES

Question 2 (continued)

		Distribution of points
(d)	3 points	•
	For a correct expression of conservation of energy $K_1 + U_{g1} = K_2 + U_{g2}$	1 point
	$\frac{1}{2}mv_1^2 = mgh_2$	
	For a correct expression for the height reached by the block $h = L - L(\cos\theta)$	1 point
	For substituting the speed value from part (c) into a correct conservation of energy equation	1 point
	$\frac{1}{2}mv_1^2 = mgL(1 - \cos\theta)$	
	$\cos\theta = 1 - \frac{v_1^2}{2gL}$	
	$\cos\theta = 1 - \frac{(1.44 \text{ m/s})^2}{2(9.8 \text{ m/s}^2)(1.2 \text{ m})}$	
	$\theta = 24^{\circ}$	
(e)	2 points	
	For substituting the correct length into the correct equation for the period $T = 2\pi \sqrt{\frac{\ell}{g}} = 2\pi \sqrt{\frac{(1.2 \text{ m})}{(9.8 \text{ m/s}^2)}} = 2.2 \text{ s}$	1 point
	For correctly dividing the period in half to solve for the time $t = T/2 = (2.2 \text{ s})/2$	1 point
	t = 1.1 s	
(-		

(f)

i. 2 points

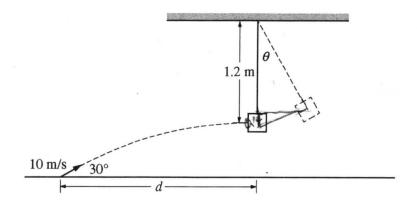
For selecting "Increase"1 pointFor a correct justification of the larger angle for the block-dart system1 pointExample: A more massive dart would cause the speed after the collision with the
block to increase. A greater speed after the collision would cause the block to
reach a greater height and thus the angle θ would increase.1

AP® PHYSICS C: MECHANICS 2015 SCORING GUIDELINES

Question 2 (continued)

Distribution of points

(f) (continued)


ii. 2 points

> For selecting "Stay the same" For a correct justification Example: A more massive dart would not affect the period of the pendulum. Only changing the length of the string would change the period. Note: If the student correctly points out the changes to the simple pendulum could

be outside the small angle approximation, then the student's entire answer will be considered (both check box and justification are consistent and physically correct).

1 point 1 point

MQ2 A1

Mech.2.

A small dart of mass 0.020 kg is launched at an angle of 30° above the horizontal with an initial speed of 10 m/s. At the moment it reaches the highest point in its path and is moving horizontally, it collides with and sticks to a wooden block of mass 0.10 kg that is suspended at the end of a massless string. The center of mass of the block is 1.2 m below the pivot point of the string. The block and dart then swing up until the string makes an angle θ with the vertical, as shown above. Air resistance is negligible.

(a) Determine the speed of the dart just before it strikes the block. $\sqrt{2}$

(b) Calculate the horizontal distance d between the launching point of the dart and a point on the floor directly below the block.

$$d=? \quad V + op, y = 0, \quad V o, y = V osinso$$

$$d = V \times (t) \qquad \frac{V o y}{g} = t$$

$$d = 8.66 \frac{m}{5} \times 0.515 \qquad t = \frac{V b sin z o}{g} = 0.515$$

$$d = [4.41 m] \qquad t = \frac{V b sin z o}{g} = 0.515$$

(c) Calculate the speed of the block just after the dart strikes. $\sqrt{b} \log z^{2}$

cons, of angular momentum!

Modart (Vo) = (Modart + Molock)(V4)

$$10^{m}/(0^{m}) = (0.02 + 0.1)(V_{f})$$

 $V_{f} = (1.67^{m}/s)$

Unauthorized copying or reuse of any part of this page is illegal.

GO ON TO THE NEXT PAGE.

^{©2015} The College Board. Visit the College Board on the Web: www.collegeboard.org.

MQ2 A2

(d) Calculate the angle θ through which the dart and block on the string will rise before coming momentarily to rest.

(e) The block then continues to swing as a simple pendulum. Calculate the time between when the dart collides with the block and when the block first returns to its original position. $T_1 me = T_2$

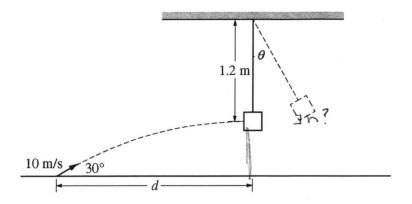
$$T = 2\pi \sqrt{\frac{1}{g}} \quad \text{simple pendulum}$$

$$\frac{1}{2} = \pi \sqrt{\frac{1}{g}}$$

$$\frac{1}{2} = \pi \sqrt{\frac{1}{g}} \quad \Rightarrow \quad T_{2} = \overline{1 \sqrt{\frac{1}{g}}}$$

- (f) In a second experiment, a dart with more mass is launched at the same speed and angle. The dart collides with and sticks to the same wooden block.
 - i. Would the angle θ that the dart and block swing to increase, decrease, or stay the same?

ii. Would the period of oscillation after the collision increase, decrease, or stay the same?


	Increase	Decrease	$\underline{\times}$ Stay the same	me	
-	Justify your answer.				
		T=2九/音	the per	iod would stay the	
	Same	because -	the length	and g stays the	
		e despite c			
nauthoriz	ed copying or reuse of		V		

Unauthorized copying or reuse o any part of this page is illegal.

-11-

MQ2 B1

+= 0.509

Mech.2.

A small dart of mass 0.020 kg is launched at an angle of 30° above the horizontal with an initial speed of 10 m/s. At the moment it reaches the highest point in its path and is moving horizontally, it collides with and sticks to a wooden block of mass 0.10 kg that is suspended at the end of a massless string. The center of mass of the block is 1.2 m below the pivot point of the string. The block and dart then swing up until the string makes an angle θ with the vertical, as shown above. Air resistance is negligible.

(a) Determine the speed of the dart just before it strikes the block.

+= 0.509

(b) Calculate the horizontal distance *d* between the launching point of the dart and a point on the floor directly below the block.

$$\Delta x = 4.414 \text{ m}$$

(c) Calculate the speed of the block just after the dart strikes.

$$M_{1}v_{1} = (M_{1} + m_{2})u_{1}$$

 $(8.66m/s)(.02 kg) = (.1kg + .02kg) u_{1}$
 $V_{f} = 1.44 m/s$

Unauthorized copying or reuse of any part of this page is illegal.

GO ON TO THE NEXT PAGE.

MQ2 B2

GO ON TO THE NEXT PAGE.

(d) Calculate the angle θ through which the dart and block on the string will rise before coming momentarily to rest.

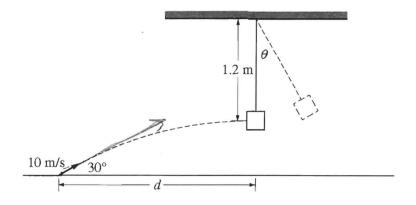
$$V_{i=1:44m(s)}$$

 $(m_{V_{i}}) - mgsin0 = 0$ $0 = sin(1.44m)$
 $(m_{V_{i}}) - mgsin0 = 0$ $0 = sin(1.47m)$
 $p_{1V_{1}} = p_{1}gsin0$ $gsin0 = 0$ $0 = 8.46^{\circ}$

(e) The block then continues to swing as a simple pendulum. Calculate the time between when the dart collides with the block and when the block first returns to its original position. $h = ? (1, 2m) \sin(8 + 6)$

$$v_{yf} = v_{yi}^{2} - Z_{q} \Delta h - D \quad v_{f} = - \frac{2Q(1.2m)sins46}{V_{yf}}$$

 $v_{yf}^{2} = v_{yi}^{2} - Z_{q} \Delta h - D \quad v_{f} = -\frac{2Q(1.2m)sins46}{V_{yf}}$
 $v_{yf} = -\frac{1.861m/s}{V_{yf}}$
 $v_{yf} = -\frac{1.861m/s}{V_{yf}}$


- (f) In a second experiment, a dart with more mass is launched at the same speed and angle. The dart collides with and sticks to the same wooden block.
 - i. Would the angle θ that the dart and block swing to increase, decrease, or stay the same?

1 -

ii. Would the period of oscillation after the collision increase, decrease, or stay the same? T=201 g _____ Stay the same Decrease Increase The period of this simple pendulom does not take into account angle. Only length and gravity. Justify your answer.

Unauthorized copying or reuse of any part of this page is illegal.

MQ2 C1

Mech.2.

A small dart of mass 0.020 kg is launched at an angle of 30° above the horizontal with an initial speed of 10 m/s. At the moment it reaches the highest point in its path and is moving horizontally, it collides with and sticks to a wooden block of mass 0.10 kg that is suspended at the end of a massless string. The center of mass of the block is (1.2 m) below the pivot point of the string. The block and dart then swing up until the string makes an angle θ with the vertical, as shown above. Air resistance is negligible.

(a) Determine the speed of the dart just before it strikes the block.

(b) Calculate the horizontal distance *d* between the launching point of the dart and a point on the floor directly below the block.

$$\frac{x_{fy}}{f_{y}=0} \quad v_{f}=v_{j}+at \quad (10\cos 30^{\circ})(.52)$$

$$6=10\sin 30^{\circ} \approx 10(t) = 6.802108 m$$

$$16t=10\sin 30^{\circ}$$

$$t=0.525$$

(c) Calculate the speed of the block just after the dart strikes.

$$\Sigma F = ma = mv^{2}$$

 $mgh + \frac{1}{2}mv^{2} = mgh + \frac{1}{2}mv^{2}$
 $10(1.2) = v^{2}$
 $\sqrt{12=v}$

Unauthorized copying or reuse of any part of this page is illegal.

GO ON TO THE NEXT PAGE.

MQ2 C2

(d) Calculate the angle θ through which the dart and block on the string will rise before coming momentarily to rest.

$$\frac{1}{2}mv^{2} + mgk = \frac{1}{2}mk^{2} + mgk$$

$$\frac{1}{2}(.02/(.1)(12) = (./2)(10)(1.2 - 1.2\cos\theta)$$

$$6 = 10(1.2 - 1.2\cos\theta)$$

$$0.5 = \cos\theta$$

$$\theta = 60^{\circ}$$

(e) The block then continues to swing as a simple pendulum. Calculate the time between when the dart collides with the block and when the block first returns to its original position.

$$V_{F} = V_{r} + at$$

$$0 = \sqrt{12} + -10(t)$$

$$t = \sqrt{12} = (0.346 \text{ sec})4 = 1.39 \text{ sec}.$$

- (f) In a second experiment, a dart with more mass is launched at the same speed and angle. The dart collides with and sticks to the same wooden block.
 - i. Would the angle θ that the dart and block swing to increase, decrease, or stay the same?

Justify your answer. because mass dosn't matter. · = thv2 = mgh

Decrease

Increase

ii. Would the period of oscillation after the collision increase, decrease, or stay the same?

_____ Increase _____ Decrease _____ Stay the same Justify your answer.

because vi and v would be the Same.

 \checkmark Stay the same

Unauthorized copying or reuse of any part of this page is illegal.

GO ON TO THE NEXT PAGE.

0

©2015 The College Board. Visit the College Board on the Web: www.collegeboard.org.

AP[®] PHYSICS C: MECHANICS 2015 SCORING COMMENTARY

Question 2

Overview

The intent of this question was to engage the students with a classic ballistic pendulum problem. This question tested student understanding of projectile motion, inelastic collisions, conservation of energy, and simple harmonic motion.

Sample: MO2 A Score: 12

This paper earned 1 point for part (a) as the horizontal velocity is clearly stated. Part (b) earned both points. In part (c) the student does start incorrectly by using angular momentum, but then recovers by writing a correct statement for linear momentum. This statement earned 1 point for using conservation of momentum and 1 point for applying it to a totally inelastic collision. However, the student uses an incorrect value for the initial speed and does not get the correct final answer. Part (d) earned all 3 points, correctly using the incorrect velocity from part (c). In part (e) both points were earned. Part (f)(i) did not earn any points, as the wrong check box is marked, but part (f)(ii) earned 2 points.

Sample: MO2 B Score: 8

This paper earned all 3 points for the first two parts (part (a) and part (b)). Note that the student calculates the relevant time in part (a), then rewrites the number in part (b). Part (c) is completely correct and earned all 3 points. Part (d) earned no points. There is no evidence of an energy approach or recognition of the geometry involved with the pendulum arc. Part (e) also earned no points; it attempts to use kinematics, which is not useful with the pendulum since the tangential acceleration is changing with time. In part (f)(i) the student checks the incorrect checkbox and therefore earned no points. However, in part (f)(ii) the student has a correct choice and justification and earned 2 points. Note that it was not necessary to discuss the bounds of the small angle approximation for the pendulum's period to earn the justification point — only the recognition that the period is independent of mass and amplitude for a simple pendulum.

Sample: MO2 C Score: 6

In this paper the point in part (a) was not earned, apparently due to an error in calculation. However, in part (b) 2 points were earned. The student correctly finds the time and then correctly computes the horizontal distance by using the speed determined in part (a). Part (c) has no evidence of a conservation of momentum approach and therefore earned 0 points. Part (d) earned all 3 points. The conservation of energy and the height attained by the pendulum are correct. The value of the speed determined in part (c) (in this case $\sqrt{12}$ m/s) is correctly substituted, so this is an example of an incorrect final answer for the angle that earned full credit. Part (e) earned 0 points as the student attempts to deal with a periodic system using kinematics. Part (f)(i) has the wrong check box marked and earned 0 points. Part (f)(ii) earned 1 point for the correct check box, but it has an incorrect justification.