
AP® COMPUTER SCIENCE A
2015 GENERAL SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even
if it occurs multiple times, or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

(v) Array/collection access confusion ([] get)

(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side effect (e.g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList, with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration (e.g., int[size] nums = new int[size];)

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction can
be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a
counterexample, note that if the code declares “Bug bug;”, then uses “Bug.move()” instead
of “bug.move()”, the context does not allow for the reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Number Group

Part (a) Interface: NumberGroup 2 points

Intent: Define interface to represent a number group

 +1 interface NumberGroup (point lost if visibility private)

 +1 boolean contains(int num);
 (point lost if visibility not public or extraneous code present)

Part (b) Class: Range 5 points

Intent: Define implementation of NumberGroup representing a range of numbers

 +1 class Range implements NumberGroup (point lost if visibility private)

 +1 Declares appropriate private instance variable(s)

 +1 Uses correct constructor header

 +1 Initializes instance variables within constructor using parameters
 (point lost if bounds errors occur in container use)

 +1 Computes and returns correct value from contains
 (point lost for incorrect method header)

Part (c) contains 2 points

Intent: Determine whether integer is part of any of the member number groups

 +1 Calls contains on elements of groupList in context of loop (no bounds errors)

 +1 Computes and returns correct value

Question-Specific Penalties

 -1 (s) Inappropriate use of static

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2015 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: Number Group

Part (a):

public interface NumberGroup
{
 boolean contains(int num);
}

Part (b):

public class Range implements NumberGroup
{
 private int min;
 private int max;

 public Range(int min, int max)
 {
 this.min=min;
 this.max=max;
 }

 public boolean contains(int num){
 return num >= min && num <= max;
 }
}

Part (c):

public boolean contains(int num){
 for (NumberGroup group : groupList){
 if (group.contains(num)){
 return true;
 }
 }
 return false;
}

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2015 SCORING COMMENTARY

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4

Overview

This question asked students to write an interface specification, a complete class implementing that
interface, and the body of a method in another class implementing the interface. In part (a) students were
asked to write the NumberGroup interface. A NumberGroup represents a collection of integers. Its
single required method is contains, which takes as its parameter an integer and returns true when
that integer is part of the collection and false otherwise. The students needed to know the correct
syntax for the interface declaration and how to provide exactly one method declaration inside that
interface. It is particularly important that the students not attempt to provide any method implementation.

In part (b) students were asked to write a Range class that implements the NumberGroup interface.
Students were expected to provide a constructor with two integer parameters and private instance
variables to maintain enough object state for the contains method to work. Two kinds of approaches
work equally well here: saving the minimum and maximum values of the range; or building an array or
ArrayList containing all the elements of the range. Students also needed to write the contains
method that was specified by the NumberGroup interface.

In part (c) students were asked to implement the contains method of the MultipleGroups class.
The MultipleGroups class has a single List instance variable groupList, which is used to
store a collection of NumberGroup objects. The method takes an integer and returns true if and only
if the integer is contained in one or more of the number groups in groupList.

Sample: 4A
Score: 8

In part (a) the student writes a correct solution. The interface header is correct, earning the first point. The
contains method is declared to take a single int parameter and to return boolean, earning the
second point. The student earned 2 points in part (a).

In part (b) the student writes the correct class header, earning the first point. The array instance variable
range is appropriate but is not declared private, so the second point is not earned. The constructor
header is correct, with two int parameters, earning the third point. The student's formula for
determining the correct array length (total) is correct, because whenever max ≥ min, as assumed in
the problem statement, Math.abs(min - max - 1) is equal to max - min + 1. This is the
correct number of entries. The range array is correctly initialized and populated with all the numbers in
the range, earning the fourth point. In the contains method, a local variable in is initialized to
false. Next, an iteration over the elements of the range array sets in to true whenever num is
found. After the loop terminates, the value in is returned. Therefore, the fifth point is earned. The
student earned 4 points in part (b).

In part (c) the student initializes a boolean variable in to false. Next, an iteration over elements of
groupList proceeds. For each element, the contains method is correctly called, earning the first
point. The variable in is set to true when contains returns true. After the loop, the value of in
is returned. This is the correct logic, so the second point is earned. The student earned 2 points in part (c).

AP® COMPUTER SCIENCE A
2015 SCORING COMMENTARY

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4 (continued)

Sample: 4B
Score: 6

In part (a) the student provides the correct NumberGroup interface header, earning the first point. The
contains method header is incorrect, missing the required int parameter. Therefore, the student
does not earn the second point. Note that even if the method header had been correct, the student
attempts to implement the method inside the interface. This is not allowed, so the student could not have
earned the second point. The student earned 1 point in part (a).

In part (b) the student provides the correct Range class header, earning the first point. The private
instance variables are also correctly declared, earning the second point. The constructor header is correct,
having two int parameters. Therefore, the student earned the third point. In order to earn the fourth
point, the student needs to correctly initialize the instance variables from the parameters. The first two
assignments are correct, but the loop to initialize group fails because group was never instantiated.
Thus, the student does not earn the fourth point. Because there is no implementation of the contains
method, the fifth point is not earned. The student earned 3 points in part (b).

In part (c) the student correctly iterates over each valid index of groupList. At each position, the
NumberGroup is accessed, and its contains method is called. This earned the first point. In the loop,
if any NumberGroup in groupList is found to contain num, true is immediately returned. Should
the loop terminate normally, it is necessarily the case that no such NumberGroup was found, and
false is returned. This correct logic earned the second point. The student earned 2 points in part (c).

Sample: 4C
Score: 2

In part (a) the student writes the correct NumberGroup interface header, earning the first point. The
contains method header is incorrect because it is missing the required int parameter. Also, the
student begins an implementation, which is not allowed in an interface definition. For either of these
reasons, the second point is not earned. The student earned 1 point in part (a).

In part (b) the student omits “implements NumberGroup” from the Range class header, so the first
point is not earned. The student declares appropriate private instance variables and the second point
is earned. The constructor header is incorrect because the int types for the two parameters are missing.
Thus, the third point is not earned. The fourth point for initialization is also not earned because the
instance variables are not assigned correctly. The student does not provide a contains method and
does not earn the fifth point. The student earned 1 point in part (b).

In part (c) the student neither writes a loop nor calls the contains method. For these reasons, the
student earned no points in part (c).

