
AP® COMPUTER SCIENCE A
2014 GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even if
it occurs multiple times or in multiple parts of that question.

1-Point Penalty
(w) Extraneous code that causes side effect (e .g., writing to output, failure to compile)

(x) Local variables used but none declared
(y) Destruction of persistent data (e .g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty
o Extraneous code with no side effect (e .g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*
o Local variable not declared provided other variables are declared in some part
o private or public qualifier on a local variable
o Missing public qualifier on class or constructor header
o Keyword used as an identifier

o Common mathematical symbols used for operators (x ~ ~ <> *)

o [] () <> vs. vs.
o = instead of == and vice versa
o Array/collection access confusion [] get
o length/size confusion for array , String List , or ArrayList , with or without ()
o Extraneous [] when referencing entire array
o [i,j] instead of [i][j]
o Extraneous size in array declaration, int[size] nums = new int[size];e.g.,

o Missing ; provided majority are present and indentation clearly conveys intent

o Missing { } where indentation clearly conveys intent and { } are used elsewhere
o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the "No Penalty" category only if the correction
can be unambiguously inferred from context; for example, " ArayList " instead of " ArrayList". As
a counterexample, note that if the code declares " Bug bug; ", then uses " Bug.move()" instead
of " bug.move() ", the context does not allow for the reader to assume the object instead of the class.

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 SCORING GUIDELINES

Question 3: Seating Chart

Part (a) SeatingChart constructor 5 points

Intent: Create SeatingChart object from list of students

+1 seats = new Student[rows][cols]; (or equivalent code)

+1 Accesses all elements of studentList (no bounds errors on studentList

+1 Accesses all necessary elements of seats array (no bounds errors on seats array, point
lost if access not column-major order)

+1 Assigns value from studentList to at least one element in seats array

+1 On exit: All elements of seats have correct values (minor loop bounds errors ok)

Part (b) removeAbsentStudents

5 points

!

!
Intent: Remove students with more than given number of absences from seating chart and return

count of students removed

+1 Accesses all elements of seats (no bounds errors)

+1 Calls getAbsenceCount() on Student object (point lost if null case not handled
correctly)

+1 Assigns null to all elements in seats array when absence count for occupying
student> allowedAbsences (point lost if seats array element changed in other cases)

+ 1 Computes and returns correct number of students removed

I Question-Specific Penalties

-2 (v) Consistently uses incorrect array name instead of seats or studentList

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 CANONICAL SOLUTIONS

Question 3: SeatingChart

 Part (a):

public SeatingChart(List<Student> studentList, int rows, int cols){

 seats=new Student[rows][cols];

 int studentIndex=0;

 for (int col = 0; col < cols; col++){

 for (int row = 0; row < rows; row++){

 if (studentIndex < studentList.size()){

 seats[row][col] = studentList.get(studentIndex);

 studentIndex++;

 }

 }

 }

}

Part (a) alternate:

public SeatingChart(List<Student> studentList, int rows, int cols){

 seats=new Student[rows][cols];

 int row=0;

 int col=0;

 for (Student student : studentList){

 seats[row][col]=student;

 row++;

 if (row==rows){

 row=0;

 col++;

 }

 }

}

 Part (b):

public int removeAbsentStudents(int allowedAbsences){

 int count = 0;

 for (int row=0; row < seats.length; row++){

 for (int col=0; col < seats[0].length; col++){

 if (seats[row][col] != null &&

 seats[row][col].getAbsenceCount() > allowedAbsences){

 seats[row][col]=null;

 count++;

 }

 }

 }

 return count;

}

These c anonical solutions serve an expository role , depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a codmg style chosen to enhance readability and facilitate understand ing.

© 2014 The College Board.
Visit the College Board on the Web www.collegeboard .org.

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Complete the Sea tingChart constructor below.

I* * Creates a seating chart with the given number of rows and columns from the students in
* studentList. Empty seats in the seating chart are represented by null.
* @par am rows the number of rows of seats in the classroom
* @par am cols the number of columns of seats in the classroom
* Precondition: rows > 0; cols > 0;
* rows *cols>= studentList.size()
* Postcond,ition:
* - Students appear in the seating chart in the same order as they appear
* in studentList, starting at seats [OJ (OJ.
* - seats is filled column by column from studentList, followed by any
* empty seats (represented by null).
* - studentList is unchanged.
*I

public SeatingChart(List<Student> studfil}tList,
int rows, int cols)"_

seo_ts -=. ~ ,S-u,d.rar,t C ('OWS J t co~s J

~ 1\~~; j-=. o ; j <cols> j +-l-)-_

for (int i::: a ', I <. r~w s l \ -+-\) {

J

Unauthorized copying o,- n,use of
any part of this page la Illegal.

}

;4' Cs\ <= s-l.vde.n~Li.s t . .s,~) {
se.o:ls C i } Cj l=- owd<21'tli cil -3et (s I) ;
.s I -t4 ,

)

}

GO ON TO THE NEXT PAGE.
-12-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

3Ab
Complete method removeAbsentStudents below. ·

I * * Removes students who have more than a given number of absences from the
* seating chart, replacing those entries in the seating chart with nul 1
* and returns the number of students removed.
* @param allowed.Absences an integer>= 0
* @return number of students removed from seats
* Postcondition:
* - All students with allowed.Absences or fewer are in their original po~tions in seats.
* - No student in seats has more than allowed.Absences absences.
* - Entries without students contain null.
*I

public int removeAbsentStudents(int allowed.Absences>.-{
int ~~~=0~ ·
for (i rrl , -::: C -, i < ~. l~~ ;- i +--t-) {

fa\- (if'\t j ==o~ _J~ < ~[O]le.Y\,:Jth ~j+-t)_
·,f (Se:xts l I J CJJ) =- 1"'\ul I)-t .

·,-r (~Ci 1Cj J_3~h-ll))al~
. Srots (1]~ 1 ~ f'\V.J\ ~

UXA t"\-1;,, -t -¼ ;

}
}

J
}

'('e.,."t.J,Al"I"\ CPv.r-.-l ,
}

// if thi~ is -l:,h~ fis.l bme ~b~,eryl.Stucbri~S ;s tf'\'-0~
1

•

If Che, c0v-lcl lten::rt~ i:hrt>~9 h -lhe. o..rrO.j G\S vR-- cld 1() q,t,eSt10"
// o. ot'\d br-eo.k th~h -t5e- loop tl--e ,ns.w.rte- We- .fuc.trd C\ n~ll,
// WD~bl k,. tv'Or e., f'CAt\ -l:c ""e e.f.f'.'6e,n{ bc...-t. woe,,.(d.1/\'{ \M)t" ~ -f'o~
I I ro u H.i pe- i n vc, k, 2-:)

Unauthorized copying or reuse of
any part ol this page Is Illegal. GO ON TO THE NEXT PAGE.

-15-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Complete the SeatingChart constructor below.

I ** Creates a seating chart with the given number of rows and columns from the students in
* studentList. Empty seats in the seating chart are represented by null.
* @param rows the number of rows of seats in the classroom
* @param cols the number of columns of seats in the classroom
* Precondition: rows > 0; cols > 0;
* rows* cols>= studentList.size()
* Postcondition:
*
*
*
*
*
* /

- Students appear in the seating chart in the same order as they appear
in studentList, starting at seats[O] (OJ.

- seats is filled column by column £rom studentList, followed by any
empty seats (represented by null).

- studentList is unchanged.

public SeatingChart(List<Student>
int rows, int

studentList,
cols) l

\Y\~ fO)-::. 0) . . . > W,-\-) ;:;. y'\J.J..}J I i'\-\- t-f ~-.,,.il:' "J ~.o \ ':i '1;

ff'(ir.+ . f.:= CJj r L r-ew.i _) r+i--) f
to-r (. (Y\-\- l ~ ~, l <- cots) l.?r~) [

Unau1horlzed copying or reuse of
any part of this page Is Illegal.

~Ct.--\~ T t J (·(j =- $~.Jc,\c~\-tL; ~;- •j--lr(po)) J

GO ON TO THE NEXT PAGE.
-12-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Complete method removeAbsentStudents below.

I** Removes students who have more than a given number of absences from the
* seating chart, replacing those entries in the seating chart with nul 1
* and returns the number of students removed.
* @par am allowed.Absences an integer>= 0
* @return number of students removed from seats
* Postconditi9n:
* - All studenrs with allowedAbsences or fewer are in their original posip.ons in seats.
* - No student in seats has more than allowedAbsences absences.
* - Entries without students contain nul 1.
*/

public int removeAbsentStudents(int allowed.Absences))
t I\~ 'TO \-o.-\ -:. 0

) l 6 or(_l'fYr (-- ~' {' (Jl<,\.~~' ~ 't.-h-~,Vn / r\.\-)
,i~-r {_ 0'\ t- l : ~) L c.. ...S-lt-..:\ s Le'":\. lo~ -0,, ~ l ++--:)

Unauthorlz-ed copying or reuse of
any part of this page Is Illegal.

i .f: (~ ,\-1 t l~ ') C (., ') I J "&1-AJ, ~~2 ~.tC.) > oJ I 0~ tt!.~\~~) l
Ju,-,),. ~ t r '"l t. c.) -:::: vw'd . ./

10hi~\ t-\--_)

GO bN TO THE NEXT PAGE.
-15-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Complete the SeatingChart constructor below. ·

I** Creates a seating chart with the given number of rows and columns from the studentS in
* studentList. Empty seats in the seating chart are represented by null.
* @par am rows the number of rows of seats in the classroom
* @param cols the number of columns of seats in the classroom
* Precondition: rows > 0; cols > 0;
* rows* cols>= studentList.size()
* Postcondition:
* - Students appear in the seating chart in the same order as they appear
* in studentList, ~tarting at seats (OJ [OJ.
* - seats is filled column by column from studentList, followed by any
* empty seats (Iepresented by null).
* - studentList is W?changed.
*I

public SeatingChart(List<Student> studentList,
int rows, int cols)

- ,
)

1

""'" ~l\6 ~"' :: 0;
fc.- c •\""1- 'i.-=-·o,· x < row" ; x.t-t- "') 'i

f.:.r-(""-t-·,r~o,· '·1 L (o\c; i '(!-+)\ NOi"

Unauthorized copying or reuse of
any part of this page la Tilegal.

t~ (I ~+od~~l.~~~. Qt;.l/11~f'II) :::::: t1v\\)t // ;F o.)1-oF-(~~•J [x J [-y J ::: s\.vi<I'\~ Li L 9t~ (tr-,J. e)lc) '

l I • ' e~ei~· 1

..s to.1-s Cx 1 C '-/1 :: "'"'' \/

GO ON TO THE NEXT PAGE.
-12-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Complete method removeAbsentStudents below.

/ **
*
*
*
*
*
*
*
*
* /

Removes students who have more than a given number of absences from the
seating chart, replacing those entries in the seating chart with nul 1
and returns the number of students removed.
@param allowed.Absences an integer>= 0
@return number of students removed from seats
Postcondition:

- All srudents with allowed.Absences or fewer are in their original positions in seats.
- No student in seats has more than allowed.Absences absences.
- Entries without students contain null.

public int removeAbsentStudents.(int allowed.Absences)

~'"'L c.+ :::. Q;
f0r- (,'t"\ +- ,.- -: 0 : >< ...::. n:,.....,c; i x+-+)i
. .f.:rl ,'1'1\.,.-y "0,· y '-- (.0\\,' y++) f

i F . c it",~\~ !ii-.:J t ~? ; '3 ~~~A ~st"< tCo ,_),.. {)., ~n ~(' J,fH,t<" «s) ~
.S(c.\\.-.s (1tJ(:yJ . :: (),>I\/

) ,<.t,-4-+,-... - J,'

Unauthorized copying or rouse or
any port o1 this page is illegal

1
J

~ I • ,

GO ON TO THE NEXT PAGE.
-1 5-

AP® COMPUTER SCIENCE A

2014 QUESTION OVERVIEWS

Question 3

Overview

This question involved the construction, initialization, and manipulation of a two-dimensional array. It also
tests the student’s ability to traverse a List, manage a counter, and return a value from a method.
Students were asked to implement a constructor and a method of the class. SeatingChart

In part (a) students were asked to implement a constructor, which required the instantiation of the
instance variable seats, a 2D array of Student objects, whose dimensions were determined by the
parameters rows and cols. The elements of studentList were to be mapped to the 2D array
seats in column-major order until all list elements had been assigned to the 2D array. Any remaining
elements of the 2D array held their default null values.

In part (b) students were required to examine the instance 2D array seats, removing all Student
elements whose absence count exceeded the parameter allowedAbsences by replacing the
Student object with null. The method calculated and returned the number of Student objects that
were removed.

Sample: 3A
Score: 8

In part (a) the student correctly creates the seats array as a two-dimensional array of Student
objects. The student uses nested for loops to access all of the elements of seats in column-major
order and attempts to fill the seats array with elements from the studentList, earning the “accesses
all necessary elements of seats array” and “assigns value from studentList to at least one element in
seats array” points. The student did not earn the second point because the condition
s1 <= studentList.size() incorrectly checks the index of the studentList. This causes an
exception to occur. At the time the exception occurs, all elements of studentList have been correctly
mapped to the seats array in column-major order, so the student earned the “all elements of seats
have correct values” point. The student earned 4 points in part (a).

In part (b), the student accesses all of the elements of the seats array. Each element is checked to
ensure it is not null before calling its getAbsenceCount() method. Whenever a student’s absence
count exceeds allowedAbsence, the Student object is removed from the seats array by replacing
it with null. A counter is correctly declared, initialized, updated, and returned to report the number of
students removed from the seats array. The student earned 4 points in part (b).

Sample: 3B
Score: 4

In part (a) the student creates the seats array as a two-dimensional array of integers instead of
Student objects, so the students does not earn the “seats = new Student[rows][cols]” point.
The student correctly accesses all elements from the studentList, breaking the nested loops when the
end of the list is reached. However, checking the index after using it fails whenever
studentList.size() == 0, so the student does not earn the “accesses all elements of
studentList” point. The student attempts to use nested for loops to access all of the elements of
seats in column-major order, but reverses the row and column indexes when accessing elements from

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A

2014 QUESTION OVERVIEWS

Question 3 (continued)

the array. As a consequence, the response does not earn the “accesses all necessary elements of seats
array” point and an exception occurs. Since at least one element of studentList is assigned to the
seats array, the student earned the “assigns value from studentList to at least one element in seats
array” point. At the time the exception occurs, not all elements of studentList have been correctly
mapped to the seats array in column-major order, so the student did not earn the “all elements of
seats have correct values” point. The student earned 1 point in part (a).

In part (b), the student accesses all of the elements of the seats array, earning the “seats = new
Student[rows][cols]” point. The student did not earn the “accesses all elements of studentList”
point because each element is not checked to ensure it is not null before calling its
getAbsenceCount() method. In all other cases, whenever a student’s absence count exceeds
allowedAbsence, the Student object is removed from the seats array by assigning null to its
row and column position. A counter is correctly declared, initialized, updated, and returned to report the
number of students removed from the seats array. The student earned 3 points in part (b).

Sample: 3C
Score: 3

In part (a) the student does not create the seats array, and did not earn the “seats = new
Student[rows][cols]” point. The student attempts to access all elements from the studentList,
but has a bad out-of-bounds check and fails to increment the index. As a result, the student did not earn
the “accesses all elements of studentList” point. The student attempts to use nested for loops to fill
the seats array with elements from the studentList. The seats array is filled in row-major order
instead of column-major order, thus the response did not earn the “accesses all necessary elements of seats
array” point. Since at least one element of studentList is assigned to the seats array, the student
earned the fourth point. The student did not earn the “all elements of seats have correct values” point
because the seats array was not filled in column-major order and the value studentList.get(0)has
been assigned to each element of the seats array due to the studentList index not being
incremented. The student earned 1 point in part (a).

In part (b), the student attempts to access all of the elements of the seats array. Since the rows and
cols variables are not defined for this method, the response does not earn the “accesses all elements of
seats” point. The student did not earn the “Calls getAbsenceCount() on Student object” point
because each element is not checked to ensure it is not null before calling its getAbsenceCount()
method. In all other cases, whenever a student’s absence count exceeds allowedAbsence, the
Student object is removed from the seats array by assigning null to its row and column position.
A counter is correctly declared, initialized, updated, and returned to report the number of students
removed from the seats array. The student earned 2 points in part (b).

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2014 GENERAL SCORING GUIDELINES
	2014 SCORING GUIDELINES
	2014 CANONICAL SOLUTIONS
	2014 QUESTION OVERVIEWS

