AP® COMPUTER SCIENCE A
2014 GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question

(a, b, ¢) may have a negative point total. A given penalty can be assessed only once for a question, even if
it occurs multiple times or in multiple parts of that question.

1-Point Penalty
(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)
(x) Local variables used but none declared
(y) Destruction of persistent data (e.g., changing value referenced by parameter)
(z) Void method or constructor that returns a value

No Penalty
o Extraneous code with no side effect (e.g., precondition check, no-op)
Spelling/case discrepancies where there is no ambiguity*
Local variable not declared provided other variables are declared in some part
private or public qualifier on a local variable
Missing public qualifier on class or constructor header
Keyword used as an identifier
Common mathematical symbols used for operators (x & + < > <> #)
[1 vs. () vs. <>
= instead of == and vice versa
Array/collection access confusion ([] get)
length/size confusion for array, String, List, or ArrayList, with or without ()
Extraneous [] when referencing entire array
[i,J] insteadof [1][7]
Extraneous size in array declaration, e.g.,, int[size] nums = new int[size];
Missing ; provided majority are present and indentation clearly conveys intent
Missing { } where indentation clearly conveys intentand { } are used elsewhere

Missing () on parameter-less method or constructor invocations

o o o 0o o 0 o 0o 0o o o O O o o o o

Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList” As
a counterexample, note that if the code declares “Bug bug;", then uses “Bug.move ()" Iinstead

of “bug.move ()", the context does not allow for the reader to assume the object instead of the class.

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 SCORING GUIDELINES

Question 2: Director

Class:

Director 9 points

Intent: Define extension to Rock class that alternates between red and green and, if color
is green when acting, causes all neighbors to turn right 90 degrees

+1

+2

+6

class Director extends Rock
Implement constructor

+1 Director () {...}
(empty body OK, point lost if extraneous code causes side effect)

+1 Sets initial color to Color.RED with setColor or super (Color.RED)

Override act

+1 Alternates color correctly (point lost for incorrect act header)
+5 Turn neighbors
+1 Instructs other object to turn if and only if this Director's color is green

when it begins to act

+1 Uses getGrid in identifying neighbors

+1 Identifies all and only neighbors or neighboring locations
+1 Accesses all identified actors or locations (no bounds errors)
+1 Calls setDirection with appropriate parameter on all identified actors

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 CANONICAL SOLUTIONS

Question 2: Director

public class Director extends Rock
{

public Director ()

{

super (Color.RED) ;

}
public void act()
{
if (getColor () .equals (Color.GREEN))
{
ArrayList<Actor> neighbors = getGrid() .getNeighbors (getLocation());
for (Actor actor : neighbors)
{
actor.setDirection (actor.getDirection() + Location.RIGHT);
}
setColor (Color.RED) ;
}
else

{
setColor (Color.GREEN) ;

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Z_A

2. This question involves reasoning about the GridWorld case study. Reference matenals are provided in the
appendixes.

A Director isatypeof Rock that has the following characteristics.

e A Director has an initial color of Coloxr.RED and alternates between Color .RED and
Color.GREEN each time it acts.

e Ifthecolorofa Director is Color.GREEN when it begins to act, it will cause any Actor objects
in its neighboring cells to turn 90 degrees to their right.

Write the complete Director class, including the zero-parameter constructor and any necessary instance
variables and methods. Assume that the Coloxr ciass has been imported. '

Pu_lalic class Director exten®s Rock

]

")L&blic Director()

t

5

Puu;c void oc k()
1

SuPer.CColor. RED) ;

.10 ng- Color (). Q,C{LAC&(S (Color- CREEN))
sedColoyr (Color. RED)
Arro.al_ls4'< Aekory oo tors = %EA{IHCQC_) geHVe(jh boﬁ(@—‘?/ﬂ_
cotion ()]
P [z g1t w5
returm
else

t for (Actor o ¢ ackors)
o;,.se,*'Dire,chn(Q _%*DimcﬁonC3+ LocaBon. RIGHT

z
f

else i (}Color(C). e mlSCchr.RED)

se}CSlor (Color . GREEN) ;
e,[s.e,
iz

Unauthorized copying or réuse of
any part of this page is illegal.

GO ON TO THE NEXT PAGE.
B

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

ZI=

2. This question involves reasoning about the GridWorld case study. Reference materials are provided in the
appendixes.

A Director isatype of Rock that has the following characteristics.
¢ A Director has aninitial colorof Color.RED and alternates between Color.RED and
Color.GREEN each time it acts. 4
» Ifthecolorofa Director is Color.GREEN when it begins to act, it will cause any Actor objects
in its neighboring cells to turn 90 degrees to their right.

Write the complete Director class, including the zero-parameter constructor and any necessary instance
variables and methods. Assume that the Coloxr class has been imported.

vied ey ..."_-"_ ryid o N
; 3

Gy =ra¥

V:;{.)\\C Qlass ‘g?’f;"cc’mr ‘P)&knds vt Rock §
puvlic Direchur() §

+\,\is.u\-cmo\f((olor.\7\ED)}
public veid ack() £
i€ (opk Grid () == hun)
rehuyn)
fﬁ(cui L\'i\'(w—‘m"> ackurs = af’f’ Ktars ()r
Por (inrizo @ ¢ Bors.sinel) yivs)§
sikiesee 15 - - Brneeton (acors. ggr (1Y) ,c\u«D\c(L?-Tor\(\'f 70%]

5

?u\:\{L PYcayLisy ¢ kchir 2 Ger ktrors () {
VChurn 4ot Guid . ger Neighborg[qerlocaHon());

§

Unauthorized copying or reuse of

SOyt o8 NP PAge e oM. GO ON TO THE NEXT PAGE.
-8-

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

2. This question involves reasoning about the GridWorld case study. Reference materials are provided in the

appendixes.

A Director isatype of Rock that has the following characteristics.
e A Director has an initial color of Color.RED and alternates between Color.RED and
Color.GREEN each time it acts.
» Ifthecolorofa Director is Color.GREEN when it begins to act, it will cause any Actor objects
in its neighboring cells to turn 90 degrees to their right.

Write the complete Director class, including the zero-parameter constructor and any necessary instance .
variables and methods. Assume that the Color class has been imported.

public cags Diweetor exengs Rock

2
PM]OHC Dieetor ()

)
§

public void act ()

set Color (_Qo\or.\ZED\',

£ (geA (olor () == Color. GREEN)

t
Areoum Ues £ pGroe> actors = new Avroy L S\"4 Acker> ()/~

AAOCS = %MAo«Lo(s

Unauthorized copying or reuse of

Sy Dorl of Hs FA Ts Dieowt. GO ON TO THE NEXT PAGE.
o8«

©2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 SCORING COMMENTARY

Question 2

Overview

This question involved reasoning in the context of the GridWorld case study. The question required the
design and declaration of a class including proper keywords, inheritance, constructor, method overriding,
and accessing and modifying inherited and nonmember instance variables and using constants. This
problem tested students’ knowledge of GridWorld classes/interfaces: Rock, Actor, Location, Grid,
and Java classes/interfaces from the AP subset: Object, and List<E>. The question necessitated a
class header, a no-argument constructor and overriding the act method. Students were required to create
the Director class as a subclass of Rock. The question required a no-argument constructor, which
set the color state of a director tobe Color.RED. Students had to override the act method of the
superclass so the same method signature and return type as the superclass (Rock) were required. The
director’s behavior required a check of the color state of the director in order to determine how to change
colors. When the director starts to act in the green color state, the director will turn all of its neighbors to
the right 90 degrees. The director turns (changes the direction of) all of its neighbors right by accessing the
neighbor’s current direction state in order to update and set the new direction state of the neighbor. If the
director’s color state is green at the beginning of act, the director changes colorto Color.RED and
vice versa.

Sample: 2A
Score: 9

The response begins with a proper class heading fora Director class that inherits from Rock. The
heading is correctly followed by the class body, surrounded by braces. The no-argument constructor
invokes the super class'’s constructor with the correct argument of Color.RED.

Thereisan act method, which overrides the superclass's act method. There is a check for the
director’s current color state of green to guard both the director’s color change and turning neighbors. The
director will turn red when the director is green at the start of the act method. When the director is not
green at the start of act, the director will turn red.

This solution completely guards the neighbor’'s turning with a check for green (many students did not
account for the director’s color state being colors other than red or green). The neighboring actors are
collected into a list by getting the current grid and using it to access the neighbors based on the director's
current location. The solution correctly iterates over the list and sets each neighbor’s direction by adding
Location.RIGHT to its current direction.

Sample: 2B
Score: 7

The response begins with a proper class heading for a Director class that inherits from Rock. The
heading is correctly followed by the class body, surrounded by braces. The Director no-argument
constructor is properly declared and does not need to explicitly invoke the super class's constructor. The
solution correctly uses the setColor modifier method to alter the color state of the constructed director.
The use of the constant Color.RED fromthe Color class was required for full credit when modifying
the director’s color in the constructor.

There isan act method, which overrides the inherited act method. The director will not alternate
colors and was not awarded the "alternates color” point. The director will always turn the neighbors when

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2014 SCORING COMMENTARY

Question 2 (continued)

it starts act, so the solution is not awarded the "only turn when green" point. The getGrid accessor
method is used to get the Grid object of the director. The solution checks to see if the grid is valid by
comparing itto null (this code was not required but is correct in the context of the case study). The
soltuion creates an ArrayList<Actor> reference and sets it to the list returned by the getActors
helper method, which the solution includes as part of the Director class. The getActors helper
method returns the list generated by the director’s grid object using the getNeighbors method based
on the director’s location. The solution uses a correct for-loop to access all of the elements in the list of
neighbors. Each neighboring actor’s direction is correctly modified by setting it to the current direction
plus 90.

Sample: 2C
Score: 3

The response begins with a proper class heading fora Director class that inherits from Rock. The
heading is correctly followed by the class body, surrounded by braces. The Director no-argument
constructor is properly declared and does not need to explicitly invoke the super class’s constructor. The
setColor modifier method alters the color state of the director. The correct color argument Color.RED
guarantees an initial color state of red.

Thereisan act method, which overrides the Rock class's act method. There is a check for the
director's current color state of green, but the guard does not protect any useful code because the
getActors method is not defined for the Director class. The solution does not earn any of the 5
points associated with the implementation of the act method.

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https:www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2014 GENERAL SCORING GUIDELINES
	2014 SCORING GUIDELINES
	2014 CANONICAL SOLUTIONS
	2014 SCORING COMMENTARY

