AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2014 SCORING GUIDELINES

Question 1

Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.
(a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.
(b) Find the value of $A^{\prime}(15)$. Using correct units, interpret the meaning of the value in the context of the problem.
(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$.
(d) For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.
(a) $\frac{A(30)-A(0)}{30-0}=-0.197$ (or -0.196) lbs/day
(b) $A^{\prime}(15)=-0.164$ (or -0.163)

The amount of grass clippings in the bin is decreasing at a rate of 0.164 (or 0.163) lbs/day at time $t=15$ days.
(c) $A(t)=\frac{1}{30} \int_{0}^{30} A(t) d t \Rightarrow t=12.415$ (or 12.414)
(d) $L(t)=A(30)+A^{\prime}(30) \cdot(t-30)$
$A^{\prime}(30)=-0.055976$
$A(30)=0.782928$
$L(t)=0.5 \Rightarrow t=35.054$

1 : answer with units
$2:\left\{\begin{array}{l}1: A^{\prime}(15) \\ 1: \text { interpretation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{1}{30} \int_{0}^{30} A(t) d t \\ 1: \text { answer }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \text { expression for } L(t) \\ 1: L(t)=0.5 \\ 1: \text { answer }\end{array}\right.$

1

1. Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.
(a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.

$$
\frac{A(30)-A(0)}{30-0}=\frac{-5.904}{30} \approx-.197 \frac{\text { pound }}{82 y}
$$

(b) Find the value of $A^{\prime}(15)$. Using correct units, interpret the meaning of the value in the context of the problem.

$$
\begin{aligned}
& A^{\prime}(t)=-.478(.931)^{t} \\
& A^{\prime}(15)=-.164 \frac{\text { pounds }}{\text { day }}
\end{aligned}
$$

The amount of grass dipping in the bin is decreasingidat (dosing) rate of .164 pounds per day at time $=15$ days
(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$.
average amount $t=\frac{1}{30} \int_{0}^{36} A \cdot(t) d t \approx 2.75263511$

$$
A(t)=2.75263511=6.687(.931)^{t}
$$

this occurs at $t=12.414$ days
(d) For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.
$L(t)$ is the tangent line to $A(t)$, at $t=30$

$$
\begin{aligned}
& A(30)=.783 \Rightarrow(30, .783)=(t, A(t)) \\
& A^{\prime}(30) \approx-.056 \text { let }-.056=m \\
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \text { so for this prob6m, } \\
& (A(t)-.783)=-.056(t-30)
\end{aligned}
$$

whin twee are .5 pounds of grass, $A(t)=5$,

$$
\begin{aligned}
(.5-.783) & =-.056(t-30) \\
t & =35.054 \text { days }
\end{aligned}
$$

1. Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.
(a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.

$$
\frac{A(30)-A(0)}{30-0}=\frac{7829278-6.687}{30}=-.196 \frac{\text { ponds }}{\text { day }}
$$

(b) Find the value of $A^{\prime}(15)$. Using correct units', interpret the meaning of the value in the context of the problem.

$$
\begin{aligned}
& A^{\prime}(t)=-\left..47809(.931)^{x}\right|_{x-15}=-.163 \frac{\text { pounds }}{}{ }^{2} \\
& \text { this value represents the rate of which the } \\
& \text { grass is decomposing } @ t=15 \text { days } \\
& \text { in pound per day }
\end{aligned}
$$

(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$.

$$
\begin{aligned}
\frac{1}{30-0} \int_{0}^{30} A(t) d t & =2.752 \\
2.752 & =6.687(.931)^{t} \\
t & =12.418
\end{aligned}
$$

(d) For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.

$$
\begin{aligned}
& A(30)=.783 \\
& (30, .783) \\
& A^{\prime}(30)=-.47809(.931)^{30}=-.056 \\
& L(t)-.783=-.056(t-30) \\
& L(t)=-.056 t+1.68+.783 \\
& L(t)=-.056 t+2.463 \\
& .5=-.056 t+2.463 \\
& t=35.053
\end{aligned}
$$

1. Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by ${ }^{\text {in }} A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.

$$
a^{4}=\ln a \cdot a^{4} \cdot u^{1}
$$

(a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.

$$
\begin{aligned}
& \frac{1}{30-0} \int_{0}^{30} A^{\prime}(t) d t=\frac{1}{30} \cdot 6.687 \cdot \int_{0}^{30}\left[(\ln .931)\left(.931^{t}\right)\right] d t \\
& =-.1968024044 \text { lbs of grass } / d 0 \mathrm{l}
\end{aligned}
$$

(b) Find the value of $A^{\prime}(15)$. Using correct units, interpret the meaning of the value in the context of the problem.

$$
\begin{aligned}
& A^{\prime}(t)=6.687 \cdot \ln (.931) \cdot\left(.931^{k}\right) \\
& A^{\prime}(15)=6.687 \cdot \ln (931) \cdot\left(.931^{k}\right)=-.1635905804
\end{aligned}
$$

the rate ot which the amount of grass in the bin is decomposing is -.1635905805 pounds per day
(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$.

$$
\begin{aligned}
& A(t)=\frac{1}{30} \int_{0}^{30} A(t) d t \\
& 6.687(.931)^{t}=\frac{1}{30}\left[\left(6.687(.931)^{30}\right)-\left(6.687(.931)^{0}\right)\right] \\
& 6.687(.931)^{t}=24981.18241 \\
& \text { thur us not } t
\end{aligned}
$$

(d) For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.

$$
.5=L(t)
$$

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2014 SCORING COMMENTARY

Question 1

Overview

In this problem students were given $A(t)$, a model for the amount of grass clippings, in pounds, contained in a bin at time t days for $0 \leq t \leq 30$. In part (a) students were asked to show the calculation of the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$ and specify the units of the result - pounds per day. In part (b) students were asked to calculate the derivative of $A(t)$ at $t=15$, either by using the calculator or by applying basic derivative formulas to $A(t)$ to obtain $A^{\prime}(t)$ and then evaluating $A^{\prime}(t)$ at $t=15$. This answer is negative. Therefore, students needed to interpret the absolute value of this answer as the rate at which the amount of grass clippings in the bin is decreasing, in pounds per day, at time $t=15$ days. In part (c) students were given two tasks. First, students needed to set up and evaluate the integral expression for the average value of $A(t)$ over the interval $0 \leq t \leq 30$, namely $\frac{1}{30} \int_{0}^{30} A(t) d t$. Second, students needed to set up and solve the equation $A(t)=\frac{1}{30} \int_{0}^{30} A(t) d t$ for t in the interval $0 \leq t \leq 30$. In part (d) students needed to compute $A(30), A^{\prime}(30)$, and write $L(t)=A(30)+A^{\prime}(30)(t-30)$. Students were to then solve the equation $L(t)=0.5$.

Sample: 1A

Score: 9

The student earned all 9 points. In part (d) the student evidently stored more accurate intermediate values in the calculator because the correct answer is presented.

Sample: 1B

Score: 6

The student earned 6 points: 1 point in part (a), 1 point in part (b), 1 point in part (c), and 3 points in part (d). In part (a) the student's work is correct. In part (b) the student earned the first point for $A^{\prime}(15)$. The units are incorrect, so the interpretation point was not earned. The student's description seems to suggest that the student thinks that $A^{\prime}(15)$ is a rate of a rate or that $A^{\prime}(15)$ suggests that A is decreasing at a negative rate at $t=15$. In part (c) the student earned the first point for $\frac{1}{30-0} \int_{0}^{30} A(t) d t$. The student's answer is not accurate to three decimal places. In part (d) the student earned the first two points for $L(t)$ and the point for setting $L(t)=0.5$. The student's answer is not accurate to three decimal places.

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2014 SCORING COMMENTARY

Question 1 (continued)

Sample: 1C

Score: 3

The student earned 3 points: 1 point in part (a), 1 point in part (b), 1 point in part (c), and no points in part (d). In part (a) the student's work is correct. In part (b) the student earned the first point for $A^{\prime}(15)$. The interpretation point was not earned because the student's claim that the grass clippings decompose at a negative rate is incorrect. The grass clippings are decreasing at the rate of $\left|A^{\prime}(15)\right|$ pounds per day at $t=15$. In part (c) the student earned the first point for $\frac{1}{30} \int_{0}^{30} A(t) d t$. In part (d) the student is not eligible for the point for setting $L(t)=0.5$ because neither of the first 2 points was earned.

