AP ${ }^{\oplus}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 4

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the

Graph of f^{\prime} closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.
(a) $x=6$ is the only critical point at which f^{\prime} changes sign from negative to positive. Therefore, f has a local minimum at $x=6$.
(b) From part (a), the absolute minimum occurs either at $x=6$ or at an endpoint.

$$
\begin{aligned}
f(0) & =f(8)+\int_{8}^{0} f^{\prime}(x) d x \\
& =f(8)-\int_{0}^{8} f^{\prime}(x) d x=4-12=-8 \\
f(6) & =f(8)+\int_{8}^{6} f^{\prime}(x) d x \\
& =f(8)-\int_{6}^{8} f^{\prime}(x) d x=4-7=-3 \\
f(8) & =4
\end{aligned}
$$

The absolute minimum value of f on the closed interval $[0,8]$ is -8 .
(c) The graph of f is concave down and increasing on $0<x<1$ and $3<x<4$, because f^{\prime} is decreasing and positive on these intervals.
(d) $g^{\prime}(x)=3[f(x)]^{2} \cdot f^{\prime}(x)$
$g^{\prime}(3)=3[f(3)]^{2} \cdot f^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot 4=75$

1 : answer with justification
$3:\left\{\begin{array}{l}1: \text { considers } x=0 \text { and } x=6 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { explanation }\end{array}\right.$
$3:\left\{\begin{array}{l}2: g^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$

NO CALCULATOR ALLOWED

4. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.

$$
x=6
$$

If has a local minnumat $x=6$, because the graph of f^{\prime} changes from negative to positive at $x=6$, using the first dervatue test f has a critical number, at $x=6$, f has a local nun mum
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.

$$
\begin{aligned}
& f(\text { (})=4 \\
& f(6) \rightarrow \int_{5}^{f} f(x) d x=7=f(b)-f(t)=4-f(6) f(6)=-3
\end{aligned}
$$

(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
$\rightarrow f^{\prime \prime}<0$
The open intervals where the graph of f is both souse Low nad inewenk is $(0,1) \cup(3,4)$, or $0<x<1$ and $3<x<4$, because using the graph of f^{\prime}. when the graph of f^{\prime} is pesiture and the slope of f^{\prime} is negate, that weans that f is moneaing and $f^{\prime \prime}$ is negate so is both con cave down and increasing.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

$$
\begin{aligned}
& g^{\prime}(x)=3(f(x))^{2} \cdot f^{\prime}(x) \\
& g^{\prime}(3)=3(f(3))^{2} \cdot f^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot(4) \\
& =3\left(\frac{25}{4}\right)^{4}=75 \\
& g^{\prime}(3)=75
\end{aligned}
$$

Graph of f^{\prime}
4. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.

$$
\begin{aligned}
& x=6 \text { because the sign of } f^{\prime} \text { changes } \\
& \text { from negative to parifive. }
\end{aligned}
$$

(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.

(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
$f(x)$ is con ave down and increasing
when f " is negative and f 'is positive this cars $(0,1)$ and $(3,4)$.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

$$
\begin{aligned}
& g^{\prime}(x)=3(f(x))^{2} \cdot f^{\prime}(x) \\
& g^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot 4 \\
& g^{\prime}(3)=-\frac{15}{14} \\
& g^{\prime(3)}=-\frac{300}{4} \\
& g^{\prime}(3)=-75
\end{aligned}
$$

$\begin{array}{llllllllllll}4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 C_{1}\end{array}$

NO CALCULATOR ALLOWED

(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.

NO CALCULATOR ALLOWED
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.

$$
\begin{aligned}
& \text { frs concave down when } f^{\prime \prime} \text { is }(-) \\
& \text { Pis inctea sing when } f^{\prime} \text { is }(t) \\
& \text { both In men }(0,1), u(3,4)
\end{aligned}
$$

(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

$$
\frac{16}{48}
$$

$$
\begin{array}{cc}
g(3)=(f(3))^{3} & x=3 \\
-\frac{5^{3}}{3} & \frac{125}{9}=y \\
y-\frac{123}{9}=48(x-3)
\end{array}
$$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING COMMENTARY

Question 4

Overview

This problem described a function f that is defined and twice differentiable for all real numbers, and for which $f(8)=4$. The graph of $y=f^{\prime}(x)$ on $[0,8]$ is given, along with information about locations of horizontal tangent lines for the graph of f^{\prime} and the areas of the regions between the graph of f^{\prime} and the x-axis over this interval. Part (a) asked for all values of x in the interval $(0,8)$ at which f has a local minimum. Students needed to recognize that this occurs where f^{\prime} changes sign from negative to positive. Part (b) asked for the absolute minimum value of f on the interval $[0,8]$. Students needed to use the information about the areas provided with the graph, as well as $f(8)$, to evaluate $f(x)$ at 0 and at the local minimum found in part (a). Part (c) asked for the open intervals on which the graph of f is both concave down and increasing. Students needed to recognize that this is given by intervals where the graph of f^{\prime} is both decreasing and positive. Students were to determine these intervals from the graph. Part (d) introduced a new function g defined by $g(x)=(f(x))^{3}$, and included that $f(3)=-\frac{5}{2}$. Students were asked to find the slope of the line tangent to the graph of g at $x=3$. Students needed to recognize that this slope is given by $g^{\prime}(3)$. In order to determine this value, students needed to apply the chain rule correctly and read the value of $f^{\prime}(3)$ from the graph.

Sample: 4A
 Score: 9

The student earned all 9 points.

Sample: 4B

Score: 6
The student earned 6 points: 1 point in part (a), 1 point in part (b), 2 points in part (c), and 2 points in part (d). In part (a) the student's work is correct. In part (b) the student earned the point for considering $x=0$ and $x=6$. The student does not report a correct answer and was not eligible for the justification point. In part (c) the student's work is correct. In part (d) the student earned the 2 points for $g^{\prime}(x)$ but did not earn the answer point.

Sample: 4C

Score: 3
The student earned 3 points: 1 point in part (a) and 2 points in part (c). In part (a) the student's work is correct. In part (b) the student does not consider $x=0$ and $x=6$, does not find the answer, and is not eligible for the justification point. In part (c) the student's work is correct. In part (d) the student makes a chain rule error in the derivative and did not earn the answer point.

