AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 2

A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .
(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.
(c) Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.
(d) Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.
(a) Solve $|v(t)|=2$ on $2 \leq t \leq 4$.
$t=3.128$ (or 3.127) and $t=3.473$
(b) $s(t)=10+\int_{0}^{t} v(x) d x$
$s(5)=10+\int_{0}^{5} v(x) d x=-9.207$
(c) $v(t)=0$ when $t=0.536033,3.317756$
$v(t)$ changes sign from negative to positive at time $t=0.536033$.
$v(t)$ changes sign from positive to negative at time $t=3.317756$.
Therefore, the particle changes direction at time $t=0.536$ and time $t=3.318$ (or 3.317).
(d) $v(4)=-11.475758<0, a(4)=v^{\prime}(4)=-22.295714<0$

The speed is increasing at time $t=4$ because velocity and acceleration have the same sign.
$2:\left\{\begin{array}{l}1: \text { considers }|v(t)|=2 \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: s(t) \\ 1: s(5)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } v(t)=0 \\ 2: \text { answers with justification }\end{array}\right.$

2 : conclusion with reason
$\begin{array}{llllllllll}2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$
2. A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .

$$
\begin{array}{rl}
|v(t)|=2 & 2 \leq t \leq 4 \\
t= & 3.128,3.473
\end{array}
$$

(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.

$$
\begin{aligned}
& S(t)=10+{ }_{0} \int^{t} v(x) d x \\
& S(5)=10+_{0} \int^{5} v(x) d x=-9.207
\end{aligned}
$$

(c) Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.

$$
\begin{aligned}
& v(t)=0 \\
& t=0.536,3.318
\end{aligned}
$$

the partocle changes dis ectoon at 0.536 because $v(t)<0$ for $(0,0.536)$ and $v(t)>0$ for $(0.536,3.318)$. The partite Changes direction at 3. $3(t$ because $v(t)>0$ for 0.536 $3.3(8)$ and $v(t)<0$ for $t>3.316$
(d) Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.

$$
\begin{aligned}
& v(4)<0 \\
& a(4)=v^{\prime}(4)<0
\end{aligned}
$$

The speed is increasing at $t=4$ because both $v(4)$ and $a(4)=v^{\prime}(4)$ cere negative.
2. A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .

(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.

(c) Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer. The particle changes direction when velocity changes sign. This occurs at time $t=3.318$ as the velocity charges from positive to negative.

$$
\begin{aligned}
& 0=-2+\left(t^{2}+3 t\right)^{1.2} t^{3} \\
& t=3.318
\end{aligned}
$$

(d) Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.

$$
\begin{aligned}
& V(t)=-2+\left(t^{2}+3 t\right)^{1.2}-t^{3} \\
& a(t)=1.2 \sqrt[5]{t^{2}+3 t}(2 t+3)-3 t^{2} \\
& v(4)=-2+(16+12)^{12}-64 \\
& a(4)=1.2 \sqrt[5]{16+12}(8+3)-48 \\
& a(4)=-22.246 \\
& v(4)=-11.476
\end{aligned}
$$

The speed of a particle is increasing if acceleration and velocity have the same sign ont decreasing if acceleration ant velocity have different signs. The speed of the particle is increasing of time $t=4$ because, at that point, both the vebcity and the acceleration are negative.
$\begin{array}{lllllllll}2 & \mathbf{2} & \mathbf{2}\end{array}$ $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .

$$
\begin{aligned}
& 2=-2+\left(t^{2}+3 t\right)^{6 / 5} \\
& 0=\left(t^{2}+3 t\right)^{6 / 5}-t^{3}-4 \\
& \rightarrow \text { graph } \\
& \text { at } t=3.1276299 \\
& t=3.128
\end{aligned}
$$

(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.

$$
\begin{aligned}
& s(t)= \int y(t) \rightarrow-t^{2}+5\left(\frac{t 5}{3}+\frac{3 t^{2}}{2}\right)^{1 / 5}-\frac{t^{4}}{4}+c \\
& 10=0+\pi(0+0)^{1 / 5}-0+c \rightarrow c=10 \\
& e s(5)=-25+6829.210659-156.25 \cdots 10 \\
& s(5)=6657.961
\end{aligned}
$$

(c) Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.

The particle charges direction when the velleity changes sign

$$
\begin{aligned}
& 0=-2+\left(t^{2}+3 t\right)^{615}-t^{3} \rightarrow g r o p n \\
& v(0)=
\end{aligned}
$$

(d) Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.

$$
\begin{aligned}
& v(4)=-2+\left(4^{2}+3(4)^{6 / 5}-4^{3}\right. \\
& v(4)=-11.476 \\
& a(t)=\frac{6}{5}\left(t^{2}+3 t\right)^{1 / 5} \cdot(2 t+3)-3 t^{2} \\
& a(4)=-22.296
\end{aligned}
$$

The speed is increasing because acculowbion and veloctilare both negate.

AP ${ }^{\circledR}$ CALCULUS AB
 2013 SCORING COMMENTARY

Question 2

Overview

This problem presented students with a particle in rectilinear motion during the time interval $0 \leq t \leq 5$. The particle's position at time $t=0$ is given, and the velocity function v is provided. Part (a) asked students to determine the times when the speed of the particle is 2 , which required determining where the velocity function is ± 2 or where the absolute value of the velocity function is 2 . In part (b) students were asked to provide an integral expression for the position $s(t)$ and then to use this expression to find the position of the particle at time $t=5$.

Students should have recognized that the position is given by $s(t)=s(0)+\int_{0}^{t} v(x) d x$ and then evaluated $s(5)$ to determine the position at time $t=5$. Part (c) asked students to determine all times $t, 0 \leq t \leq 5$, at which the particle changes direction. Students needed to determine where $v(t)$ changes sign. In part (d) students were asked whether the speed of the particle is increasing or decreasing at time $t=4$. Students should have evaluated both the velocity and the acceleration functions at time $t=4$. Because $v(4)<0$ and $a(4)<0$, the speed of the particle is increasing.

Sample: 2A

Score: 9

The student earned all 9 points.

Sample: 2B
 Score: 6

The student earned 6 points: no points in part (a), 2 points in part (b), 2 points in part (c), and 2 points in part (d). In part (a) the student's work is incorrect. In part (b) the student's work is correct. In part (c) the student earned the point for considering $v(t)=0$ and 1 point for a single correct answer with correct justification. In part (d) the student's work is correct.

Sample: 2C

Score: 3

The student earned 3 points: 1 point in part (c) and 2 points in part (d). In parts (a) and (b), the student's work is incorrect and did not earn any points. In part (c) the student earned the point for considering $v(t)=0$. In part (d) the student's work is correct.

