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Infinite Series In Calculus
Jim Hartman 
The College of Wooster 
Wooster, Ohio

In the study of calculus, the topic of infinite series generally occurs near the end of 

the second semester in a typical two-semester sequence in single variable calculus. 

This seems to be one of the most difficult topics for students to understand and for 

teachers to explain clearly. It should not be surprising that these ideas are as difficult 

to grasp as the use of ε−δ proofs for limits, since these concepts—limits and infinite 

series—are related, and both took hundreds of years to formulate. Thus, even though 

now we have a better perspective from which to start, it is still much to ask of our 

students to gain a full understanding of infinite series in the two to four weeks given 

to their study in a beginning calculus course.

Some History of Infinite Series

Concepts surrounding infinite series were present in ancient Greek mathematics as 

Zeno, Archimedes, and other mathematicians worked with finite sums. Zeno posed 

his paradox in about 450 BCE, and Archimedes found the area of a parabolic segment 

in approximately 250 BCE by determining the sum of the infinite geometric series 

with constant ratio 1
4  (Stillwell 1989, 170). One cannot credit Archimedes (or the 

Greeks) with discovering infinite series, since Archimedes worked only with finite 

sums and determined that certain finite sums underapproximated the area and others 

overapproximated the area, leaving the common limit (not known to him as a limit) 

as the area of the parabolic segment. However, this does point out one of the two 

motivations for the development of infinite series: (1) to approximate unknown areas, 

and (2) to approximate the value of π. 

A nongeometric series appeared in Liber calculationum by Richard Suiseth, 

known as “The Calculator” (Stillwell 1989, 118), in approximately 1350. Suiseth 
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However, in the same century, Madhava of Sangamagramma (c. 1340–1425) 

and fellow scholars of the Kerala school in southern India were making even 

more important discoveries about infinite series. Madhava, an astronomer and 

mathematician, used the now easily obtained series = +
π
4

1
1

3

1

5

1

7
+L– –  to estimate 

π, and, in addition, transformed this series into the more rapidly converging series 
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L−−  for π (Joseph, 290). More generally, he discovered what 

we now call the Taylor series for arctangent, sine, and cosine (Joseph 2000, 289–293; 

Katz 2004, 152–156). One theory is that these ideas may have been carried to Europe 

by Jesuit missionaries to India (Katz 2004, 156). 

Moving to Europe, Portuguese mathematician Alvarus Thomas considered 

geometric series in 1509 (Cajori 1919, 172). Pietro Mengoli of Bologna treated particular 

infinite series in Novæ quadraturae arithmeticae in 1650, finding 
1

11 n nn +( )=

∞

∑  along 

with proving the divergence of the harmonic series. In 1668, the theory of power series 

began with the publication of the series for ln 1+( )x  by Nicolaus Mercator, who did 

this by “integrating” 
1

1+ x
 (Stillwell 1989, 120).

Newton’s general binomial theorem in 1665 aided the finding of series for many 

functions. Newton, Gregory, and Leibniz all used interpolation ideas to lead to their 

important results and went from finite approximations to infinite expansions. There 

is strong evidence that James Gregory, who was the first to publish a proof of the 

Fundamental Theorem of Calculus in 1668, used Taylor series in 1671, 44 years prior to 

Brook Taylor’s results in 1715.

In 1734, Leonhard Euler gave new life to infinite series by finding that 1
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 after attempts by Mengoli and the Bernoulli brothers had failed. In 1748, Euler used 
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some ideas from his work in 1734 to generate what we now call the Riemann zeta 

function ζ z
nz

n

( ) =
=

∞

∑ 1

1

. This function, named after Bernhard Riemann because he 

was the first to use complex numbers in the domain of this function, has become 

important because of its relationship to the distribution of prime numbers and holds 

the distinction today of pertaining to one of the most famous unsolved problems in 

mathematics, the Riemann Hypothesis.

During this time, issues of convergence of series were barely considered, which 

often led to confusing and conflicting statements concerning infinite series. The 

first important and rigorous treatment of infinite series was given by Karl Friedrich 

Gauss in his study of hypergeometric series in 1812 (Cajori 1919, 373). In 1816, Bernard 

Bolzano exhibited clear notions of convergence. Augustin-Louis Cauchy shared these 

ideas with the public in 1821 in his textbook Cours d’analyse de l’École Polytechnique. 

The ratio and root tests and the idea of absolute convergence were included in this 

text. Uniform convergence was studied in the middle of the nineteenth century, and 

divergent series were studied in the late nineteenth century.

Today, infinite series are taught in beginning and advanced calculus courses. 

They are heavily used in the study of differential equations. They are still used to 

approximate π as illustrated by the BBP (Bailey, Borwein, and Plouffe) formulas. One of 

these, discovered by Plouffe in 1995, gives the base 16-digit extraction algorithm for π 

using π =
+

−
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This historical background would not be complete without mentioning 

Fourier series, which attempt to give values for a function using an infinite sum 

of trigonometric functions. These are named after Joseph Fourier, a scientist and 

mathematician who used them in La Théorie Analytique de la Chaleur in 1822 to 

study the conduction of heat.

You can see that the development of the concepts surrounding infinite series took 

a long time and involved many different mathematicians with many different ideas. 

It’s not surprising that our students don’t fully comprehend their nuances in just one 

semester of study.

The Heart of Infinite Series

At the heart of infinite series are three concepts:

(1)	 the definition of convergence of an infinite series,
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(2)	 positive term series, and

(3)	 absolute convergence of series.

While absolute convergence does not appear specifically in the AP® syllabus, 

power series cannot be fully considered without this idea, nor can one take full 

advantage of the ratio and root tests. 

Given students’ difficulty with understanding the concept of infinite series, 

I believe we frequently “rush” to get to the tests for convergence and never really 

require students to fully understand the notion of convergence. More time should be 

spent with students computing partial sums and attempting to find the limits of these 

sequences of partial sums.

For positive term series, convergence of the sequence of partial sums is simple. 

Since for a positive term series the sequence of partial sums is nondecreasing, 

convergence of the sequence of partial sums occurs if and only if that sequence is 

bounded above. We probably should spend more time finding upper bounds for the 

sequence of partial sums of a positive term series or showing that there is no such 

upper bound. Nearly all of the convergence tests are founded on this one idea. The 

comparison test, limit comparison test, and integral test all lead directly to upper 

bounds for the sequence of partial sums or show that there is no such upper bound. 

Even the ratio and roots tests essentially are a limit comparison test with a geometric 

series, and show convergence if the comparison is with a geometric series whose 

common ratio has an absolute value of less than 1. Thus, the ratio and root tests are 

just formalized versions of a limit comparison test with a geometric series. Relating 

these tests back to upper bounds for the sequence of partial sums might help our 

students see the one common thread for all these tests.

For series that have both positive and negative terms, the idea of absolute 

convergence becomes helpful. If a series converges absolutely, then it must converge. 

While this idea is the one needed most frequently, our students sometimes fixate on 

the alternating series test, which is a very specialized test guaranteeing convergence 

of a particular type of infinite series. I believe we sometimes overemphasize the 

importance of this test because we want to make clear the distinction between 

absolute convergence and convergence. That is, we want to give examples of series 

that converge but do not converge absolutely. It is relatively difficult to do that without 

giving examples of series satisfying the hypotheses of the alternating series test. 

This is because it is difficult to show that a series not satisfying the hypotheses is 

convergent when it is not absolutely convergent. In fact, showing convergence of 

an arbitrary series can be quite difficult. No matter what rules we might develop to 
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determine the convergence of a series, “a series can be invented for which the rule 

fails to give a decisive result.” (Bromwich 1965, 46). Thus, it is not surprising that 

infinite series is a difficult topic for our students.

Once students understand the concept of convergence and divergence of infinite 

series, there are two basic questions one can ask about a specific series:

(1)	 Does that series converge?

(2)	 If it converges, to what does it converge; and if it diverges, why?

We have already talked about the first question above. The second question 

really leads to the study of power series. Power series define functions on their 

intervals of convergence, and the challenge is to identify these functions. The other 

role of power series is to allow us to express a given function as a power series and 

then use that expression as a means to approximate the function with a polynomial 

function, which uses only simple arithmetic (addition and multiplication) to 

approximate functional values.

Infinite Series in AP® Calculus

The May 2008 syllabus for AP Calculus BC lists the following items:

Polynomial Approximations and Series

Concept of series

A series is defined as a sequence of partial sums, and convergence is defined in 

terms of the limit of the sequence of partial sums. Technology can be used to explore 

convergence and divergence.

Series of constants

•	 Motivating examples, including decimal expansion

•	 Geometric series with applications

•	 The harmonic series

•	 Alternating series with error bound

•	 Terms of series as areas of rectangles and their relationship to improper 

integrals, including the integral test and its use in testing the convergence 

of p-series

•	 The ratio test for convergence and divergence

•	 Comparing series to test for convergence or divergence
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Taylor series

•	 Taylor polynomial approximation with graphical demonstration of 

convergence (for example, viewing graphs of various Taylor polynomials of 

the sine function approximating the sine curve)

•	 Maclaurin series and the general Taylor series centered at x = a

•	 Maclaurin series for the functions ex, sin(x), cos(x), and 
1

1− x
•	 Formal manipulation of Taylor series and shortcuts to computing Taylor 

series, including substitution, differentiation, antidifferentiation, and the 

formation of new series from known series

•	 Functions defined by power series

•	 Radius and interval of convergence of power series

•	 Lagrange error bound for Taylor polynomials

These indicate both what students should know about infinite series and what 

they should be able to do with infinite series. It’s possible to see these items being 

tested by examining those free-response questions that have appeared on the AP 

Calculus BC Exam over the years. The following table identifies questions pertaining 

to the particular ideas mentioned in the syllabus using the AP Calculus BC Exams 

from 1969 to the present. Questions can occur under multiple sections below.

Topic Exam Questions

Geometric Series 1981-3a, 1981-3b, 1981-3c, 2001-6d, 2002-6c

Harmonic Series 1972-4b, 1975-4b, 1982-5b, 2002-6a, 2005-6c 

Alternating Series Test 1970-6b, 1972-4b, 1975-4b, 1982-5b, 2002-6a

Alternating Series Error
1970-6c, 1971-4d, 1979-4c, 1982-5c, 1984-4c, 1990-5c, 1994-5c, 
2000-3c, 2003-6b, 2006-6d, 2007-6d

Integral Comparisons 1969-7a

Integral Test 1969-7bc,1973-6c, 1992-6b

Ratio Test 1975-4a 

nth Term Test (Divergence) 1973-6a

Comparison Test 1972-4a, 1973-6b, 1977-5a, 1980-3a, 1980-3c, 1992-6a, 1992-6c

Taylor Polynomials 1995-4c, 1997-2a, 1998-3a, 1999-4a, 2000-3a, 2004-6a, 2005-6a 

Taylor Polynomial Approximation 1971-4c, 1984-4b, 1995-4a, 1995-4b, 1997-2d, 1998-3d

Lagrange Error Bound 1976-7c, 1999-4b, 2004-6c

Taylor or Maclaurin Series
1971-4a, 1982-5a, 1986-5a, 1990-5a, 1996-2a, 2003-6a, 2004-6b, 
2005-6b

Radius of Convergence 1984-4a, 2000-3b
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Interval of Convergence
1971-4b, 1972-4b, 1975-4b, 1976-7b, 1979-4b, 1982-5b, 1983-5b, 
1987-4b, 1988-4, 1991-5c, 1994-5b, 2001-6a, 2002-6a, 2005-6c

Known Maclaurin Series 1976-7a, 1979-4a

Manipulation of Known Series
1982-5d, 1986-5b, 1987-4a, 1987-4c, 1991-5a, 1993-5a, 1993-5b, 
1994-5a, 1996-2b, 1996-2c, 1998-3b, 1999-4c, 2001-6b, 2003-6c, 
2006-6a, 2006-6b, 2007-6a, 2007-6b

Differentiation of Series 1983-5c, 1986-5c, 1993-5c, 1997-2b, 2002-6b, 2003-6c, 2006-6a

Antidifferentiation of Series
1990-5b, 1991-5b, 1997-2c, 1998-3c, 2001-6c, 2004-6d, 2006-6c, 
2007-6c

The table above indicates that one of the most common types of questions involves 

the use of known series that are then modified through differentiation, integration, 

substitution (e.g., finding a Maclaurin series for sin(x2) using the known series for 

sin(x)), and/or algebraic manipulation. These are all questions that manipulate the 

known series specified by the course description or manipulate a series given in the 

stem or another part of the problem.

A second item commonly tested is that of interval of convergence. This most 

frequently involves using the ratio test to find the radius of convergence and then 

checking individually each of the endpoints of the interval generated by that radius 

of convergence to determine convergence or divergence. The endpoint checking has 

often involved the use of the alternating series test and knowledge of the convergence 

or divergence of well-known series, such as the harmonic series.

The third most common question involves the use of the alternating series error-

bound theorem. The typical form for this question is to use the first several terms of a 

Taylor polynomial to approximate the value of a function at a point and then either ask 

the question of how much error could have been made or have the student show that 

the error made in the approximation is less than a specified amount.

In terms of the multiple-choice portion of the exam, the following types of 

questions were asked for the years when exams were released.

1997  
Multiple-Choice Topics

1998  
Multiple-Choice Topics

2003  
Multiple-Choice Topics

Sum of a Geometric Series Taylor Polynomial Approximation Geometric Series

Sequence Limit Question Convergence Tests—Several Manipulation of Series

Taylor Polynomial Integral Test Manipulation of Series for ex

Interval of Convergence Differentiation of Series nth Term Test and p Series

Differentiation of Series Geometric and Alternating  
Series Test

Differentiation of Series and 
Taylor Series
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Calculator—Error in 
Approximation Question

Taylor Polynomials

Interval of Convergence

Exponential Series

In regard to teaching infinite series, one thing is certain: They should be taught in the 

context of giving a different way of expressing a function, of their use as approximating 

(Taylor) polynomials, and of the error made in that approximation—whether it be given 

by the Lagrange error bound or by the alternating series error theorem.
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Setting the Stage with Geometric Series
Dan Kennedy 
Baylor School 
Chattanooga, Tennessee

One of the difficult things about teaching infinite series at the end of an AP Calculus 

BC course is trying to make the students see the topic as something other than a 

four-week detour down a side track just when the train ought to be coming into the 

station. It is particularly difficult to disabuse students of this notion if the teacher 

secretly shares their concern. That is why it is easier for both teacher and students if 

the emphasis is on functions from the beginning, and if calculus becomes part of the 

picture shortly thereafter. 

There are good reasons to talk about series in an introductory calculus course, 

and it is helpful to keep them in mind when thinking about how to teach the topic. 

Infinite series are another important application of limits. Moreover, as limits they 

are easier to understand than either the derivative or the integral because they do not 

involve those mysterious differentials. 

The construction of Taylor series is not only a nice application of the derivative 

but also a nice review of such topics as linear approximation, slope, and concavity. 

If a function can be represented by a power series, it can be differentiated or 

integrated as easily as a polynomial. This provides another approach to evaluating 

expressions like e dxx2

∫  that would be difficult or impossible otherwise. Series 

figured prominently in the early history of calculus, so they ought to play some role in 

an introductory course.

Series figure prominently in higher-level analysis courses, so it is useful to lay the 

groundwork for our better students as soon as we can.

Notice that most of these good reasons for teaching series in a calculus course 

involve series as functions, not series as infinite sums of numbers. In fact, series of 

numbers are only important when considering the various tests for convergence. One 
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school of thought is that students need to see all those tests before seeing their first 

power series, necessitating a detour away from functions and calculus that is difficult 

to motivate. A more intuitive (and historically faithful) approach is to play with power 

series from the beginning and see what can be done with them. The question of 

convergence eventually must be confronted, but in the meantime it is sufficient for 

students to know that convergence is an issue. 

Happily, there is a way to introduce students to power series right away and 

simultaneously make them aware of the question of convergence, all while building on 

their existing knowledge of a previous topic: geometric series. 

Geometric Series Basics

Even if students have not studied geometric series by name, they have encountered 

them in various convergent forms. 

For example, a 1"-by-1" square can be cut into 

two halves. One half can then be cut into two 

quarters, one quarter can be cut into two eighths, 

and so on ad infinitum. This process of infinite 

subdivision, the basis of some of Zeno’s ancient 

paradoxes, leads to the inevitable conclusion that 

1

2

1

4

1

8

1

2
1+ + + + 



 + =

n

. 

For another example, some well-known rational numbers have familiar decimal 

expansions that are actually convergent geometric series:

0 3
3

10
3

100
3

1000
3

1
10

1
3

. = + + + + 



 + =L L

n

.

So infinite sums can converge to finite numbers, but obviously not all of them 

do. For example, 1 + 1 + 1 + … is infinite, and 1 1 1 1 1 1− + − + + − ++L L( )n  is at least 

ambiguous. The latter series shows the necessity of defining the sum of an infinite 

series as the limit of its sequence of partial sums. 

There is a formula for the nth partial sum of a geometric series in which r ≠ 1:

a ar ar ar ar
a ar

r
n

n

+ + + + + = −
−

−2 3 1

1
L .

L L
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(There are several ways to prove this, and most precalculus texts do.) The limit 

of the nth partial sum as n →∞ depends entirely on the fate of rn, which goes to zero if 

and only if r < 1 . If r ≥ 1 , the limit diverges. 

Thus, whether or not students have formally studied geometric series, 

they can be led very quickly to the realization that a series of the form 

a ar ar ar ar n+ + + + + +−2 3 1L L  converges if and only if r < 1, in which case the sum 

is 
a

r1−
. 

At this point, students are ready for x. 

A Geometric Series for f x
x

( ) =
1

1-

If x < 1, then 
1

1− x
 is the sum of the geometric series 1 2 3 1+ + + + + +−x x x x nL L. 

The latter expression looks like a polynomial of infinite degree, but since there is 

no such thing we must give it a new name. We call it a power series (a series of 

powers of x). It is an interesting example of a function with domain (–1, 1), since we 

can technically plug in values of x outside the domain, but we get expressions like 

1 2 2 22 3+ + + +L  that are simply meaningless. If, on the other hand, we plug in a 

value of x inside the domain, we get 
1

1− x
. The interval (–1, 1) is called the interval of 

convergence. 

The partial sums of a power series are polynomials. If we graph them, we get a 

dramatic visualization of why the interval of convergence matters, as in the graphs 

below of the fourth and fifth partial sums of 1 2 3 1+ + + + + +−x x x x nL L  compared to 

the graph of 
1

1− x
:
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The quartic and quintic polynomial partial sums do a very good job of approximating 
1

1− x
 in the interval of convergence (–1, 1), but outside that interval they are not even 

close. The partial sums of higher degree approximate the curve progressively more 

closely on the interval of convergence, but with no better success outside that interval. 

Exploring the Implications

•	 Find a power series to represent 
1

1+ x
 and give its interval of convergence.

	 Solution: We use a geometric series with first term 1 and ratio –x. 

	 1 12 3 1 1− + − + + − +− −x x x xn nL L( ) .

	 It converges for − <x 1, so the interval of convergence is (–1, 1). 

•	 Find a power series to represent 
1

1 2+ x
 and give its interval of convergence

	 Solution: We use a geometric series with first term 1 and ratio −x 2.

	 1 12 4 6 1 2 2− + − + + − +− −x x x xn nL L( ) .

	 It converges for − <x 2 1 , so the interval of convergence is (–1, 1).

•	 Find a power series to represent tan ( )−1 x  and give its interval of convergence.

	 Solution: We just found a series to represent 
d

dx
x

x
tan− ( )( ) =

+
1

2

1

1
:

	 1 12 4 6 1 2 2− + − + + − +− −x x x xn nL L( ) .
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	 The interval of convergence of this series is  (–1, 1).

•	 For x in the interval of convergence, we can write the equation:

	

1
1

1 12
2 4 6 1 2 2

+
= − + − + + − +− −

x
x x x xn nL L( )

	 The antiderivatives should then differ by a constant:

	
tan ( ) ( )− −

−

+ = − + − + + −
−

1
3 5 7

1
2 1

3 5 7
1

2 1
x C x

x x x x
n

n
n

L ++L

	 Now we can find the constant by letting x = 0:

	

tan ( ) ( )− −
−

+ = − + − + + −
−

1
3 5 7

1
2 1

0 0
0
3

0
5

0
7

1
0
2 1

C
n

n
n

L ++

+ =
=

L

0 0

0

C

C

	 So tan ( ) ( )− −
−

= − + − + + −
−

+1
3 5 7

1
2 1

3 5 7
1

2 1
x x

x x x x
n

n
n

L L.

	 We expect this equation at least to be valid on the interval (–1, 1), but in fact we 

have also picked up convergence at the endpoints. For example, plugging x = 1 

into the series yields

	 1
1
3

1
5

1
7

1
1

2 1
1− + − + + −

−
+−L L( )n

n
.

	 This is an example of an alternating series of terms of diminishing magnitude that 

tend to a limit of 0. Such series always converge. (This is the alternating series 

test.) Students can easily be convinced of this fact by tracking the partial sums of 

this series on a number line:

L
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The partial sums bounce back and forth on the number line, but because each added 

or subtracted term is smaller than the previous one, they get closer to a limit in the 

process. Since the terms tend to zero, there is a limit L that becomes the sum. 

It seems logical (and it can be proved using a deeper understanding of limits) that 

the number to which 1
1

3

1

5

1

7
1

1

2 1
1− + − + + −

−
+−( )n

n
 converges ought to be 

tan− ( )1 1 , which we know to be 
π
4

. This series can, in fact, be used to compute π, but 

it is so close to the threshold of divergence that it converges too slowly to be of much 

practical value. (Students can convince themselves of this fact by trying the partial 

sums on their calculators. You know that some of them will.)

Beginning with geometric series, you will have thus exposed students to the idea 

that functions can be represented by power series, that such series have intervals 

of convergence for which such representations are valid, and that series can be 

manipulated using calculus to yield new functions. You will have shown them power 

series that they will eventually recognize as the Maclaurin series for three different 

functions (along with their intervals of convergence), and you will even have exposed 

them to a valuable convergence test for series of constants. In all likelihood you will 

have been able to accomplish this during a single class period. 

Reaping the Benefits

Once students have seen that a power series can represent a function on some 

interval of convergence, they can discover some significant results on their own. Here 

are just two examples.

Challenge: Consider the function f defined by the infinite series 

f x x x x x
n

n

( )
! ! !

.= + + + + + +1
2 3

2 3

(a)	 Find f(0).

(b)	 Find f'(x). What is interesting about it?

(c)	 What can you conclude about the function f?

Students will easily guess that the function is f(x) - ex, but only the best of them will 

recognize that they have the information required to conclude that f(x) must be ex. In 

part (b) they discover the differential equation f’(x) = f(x), and in part (a) they discover 

the initial condition f(0) = 1. The unique solution to this initial value problem is f(x) = ex.

L L

L L
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Challenge: Construct a fifth-degree polynomial P such that:

P

P

P

P

P

P

( )

( )

( )

( )

( )( )

(

0 2

0 3

0 5

0 7

0 114

5

=
′ =
′′ =
′′′ =

=
)) ( )0 13=

Students will usually succeed at this, and in the process they will see that the 

coefficient of xn must be 
P

n

n( ) ( )

!

0
. You are then ready to ask them to build a polynomial 

whose first n derivatives match the first n derivatives of a function f at 0 (the sine 

function, for example). The coefficient of each xn will then be 
f

n

n( ) ( )

!

0
. Your students 

will have discovered Maclaurin series!

Challenge: BC-3 from the 1981 AP Examination. 

Let S be the series S
t

t

n

n

=
+







=

∞

∑
10

 where t ≠ 0.

(a)  Find the value to which S converges when t = 1.

(b)  Determine the values of t for which S converges. Justify your answer.

(c)  Find all values of t that make the sum of the series S greater than 10.

Students are ready for this as soon as they understand geometric series. Curiously, 

as they learn more about series they become overqualified to solve something this 

simple.

Challenge BC-3 Solution

(a)  �When t = 1, S
n

n

= 





=

∞

∑ 1

20

. This is a geometric series with first term a = 1 and 

common ratio r =
1

2
. Hence S

a

r
=

−
=

−





=
1

1

1
1
2

2 .

(b)  �The series will converge if and only if 
t

t1
1

+
<  where t ≠ 0. This will be true for t 

> 0 and for − < <
1

2
0t .
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(c)  �Since the series is a geometric series with first term a = 1 and common ratio 

r
t

t
=

+ 1
, we will have S

a

r t
t

t

t t
t=

−
=

−
+







=
+

+ −( )
= +

1

1

1
1

1

1
1 . 

Thus S > 10 when t > 9.

Once your students have grasped the general idea of what series are and how they 

behave, they will be ready to tackle the rest of the topics for infinite series—eventually 

even those other tests for convergence!
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Convergence of Taylor and Maclaurin Series
Ellen Kamischke 
Interlochen Arts Academy 
Interlochen, Michigan

Instructional Unit Overview

Focus: 	� How to determine the radius and interval of convergence of a Taylor or 

Maclaurin series

Audience: 	 AP Calculus BC students

In this three-day unit students are introduced to the idea of the interval and radius of 

convergence of a Maclaurin or Taylor series. The first lesson has students determine 

this interval visually and by checking suspected endpoints of the interval. Students 

start by considering the series for sin(x) and also the series for 
1

1− x
 since this 

expression can be viewed as the sum of a geometric series. Next they investigate a 

series that is not geometric but appears to have a limited interval of convergence. In 

the process of exploring this series, the harmonic series is introduced along with the 

integral test. In a homework problem, students will encounter an alternating harmonic 

series and need to reason out its convergence. An investigation is also provided that 

leads students through much of this material independently or in a small-group setting 

rather than in a large class format.

The second lesson introduces the ratio test and formalizes the alternating series 

test. Time is spent practicing these tests on portions of previous AP free-response 

problems. An investigation is provided that asks students to explore the ratio of the 

terms of a series in the limit and generalize the ratio test from their results. 

The third lesson addresses some interesting questions about series, such as 

“Does a Taylor series always converge to the function from which it was constructed?” 

“Can a series converge to more than one function?”, and “Is every series that converges 
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to a function the Taylor series for that function?” Reflecting on questions like these 

and extending beyond the normal range of material helps students gain perspective 

on the larger picture. 

Assumed skills and knowledge: Students should be able to use a calculator 

or computer to graph a function and evaluate it at a point. They should understand the 

meaning of convergence and divergence for an infinite series. Students should know 

the formula for the sum of a geometric series. Students should be able to construct a 

Taylor or Maclaurin series for a given function. They should know the Lagrange form 

of the error and be able to use it to estimate the accuracy of an approximation made 

with a Taylor polynomial.

Background information on Taylor series: When finding the Taylor series 

for a function, it is important to determine for what values of x the series approximates 

the generating function. Finding this interval of convergence is sometimes a very 

straightforward procedure. Often the greatest challenges come in determining 

convergence at the endpoints of the interval. 

The Taylor series for a function about x = a is constructed according to the formula 

f x f a f a x a
f a

x a
f a( ) = ( ) + ′( ) −( ) + ′′( )

−( ) + ′′′( )
2

2

! 33
3

! !
x a

f a
n

x a
n

n−( ) + +
( )

−( ) +L L. 

Students should recognize the first two terms of this series as the linear 

approximation for a function, or the equation of the line tangent to f (x) at x = a. I like 

to check the students’ understanding of the information presented in the first few 

terms of the series by using exercises like the following:

1.	 If the Taylor series is constructed 

for the function shown at right, 

centered at the point (1, 3), what 

can be determined about the 

coefficients of the first three 

terms of the series?

Solution: The first term is 2, the value of f(1). The coefficient of the second term is 

positive because the first derivative or slope of the tangent is positive. The coefficient of 

the third term is also positive because the function is concave up near the point (1, 2). 
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2. The third-degree Taylor polynomial T about x = 1 for a function, f (x), is 

T x x x( ) = + −( ) − −( )3 2 1 4 12 3. What information do you know about f(x)?

Solution: From the first term you know that f(1)=3. There is no linear term so the 

first derivative at the point (1, 3) is 0, and this is a critical point. The coefficient of the 

second-degree term is positive, so the function is concave up near the point (1, 3), 

making this critical point a minimum. The second derivative has a value of 4 and the 

third derivative has a value of -24.

Other problems that test students’ understanding of the construction of Taylor 

series give an expression for the nth derivative of the function. In student work one 

common error is to neglect to include the factorials in the denominators. A nice 

example of this sort of problem comes from the 2005 AP Calculus BC Exam, question 6.

2005 BC#6

Let f be a function with derivatives of all orders and for which f (2) = 7. When n is odd, 

the nth derivative of f at x = 2 is 0. When n is even and n ≥ 2, the nth derivative of f at  

x = 2 is given by f
nn

n
( ) ( ) =

−( )
2

1

3

!
.

a. 	 Write the sixth-degree Taylor polynomial for f about x = 2.

Solution: P x x x6 2
2

4
4

67
1

3

1

2
2

3

3

1

4
2

5

3
( ) = + −( ) + −( ) +

!
·

!

!
·

!

!
·
11

6
2 6

!
x −( )

Students must pay close attention to the fact that the odd derivatives are 0. They 

must also realize that the sixth-degree Taylor polynomial includes terms up to and 

including (x – 2)6, and not necessarily six terms. 

b. 	 For the Taylor series for f about x = 2, what is the coefficient of (x – 2)2n for  

n ≥ 1?

Solution: 
2 1

3

1

2

1

3 22 2

n

n nn n

−( )
( )

=
( )

!
·

!

Students can either substitute 2n for n in the general term of the series, or 

observe the pattern in the terms of the series with powers of 2 ∙ 0, 2 ∙ 1, 2 ∙ 2, and 2 ∙ 3, 

then create a general term based on that pattern. Once again they must be careful to 

remember to include the factorial in the denominator and not just state the value of 

the derivative.

c.	 Find the interval of convergence of the Taylor series for f about x = 2.  

Show the work that leads to your answer.
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The first two parts of this question deal with constructing the Taylor polynomial and 

series, and can be done before studying the interval of convergence. The problem of 

determining the interval of convergence is the focus of the next three lessons.

Day 1: Introducing the Interval of Convergence
To introduce the idea of the interval of convergence I have students look at the Taylor 

series for f (x) = sin(x) and graph partial sums on their calculators. We then discuss 

how it appears that as one adds more terms of the series, the partial sums “fit” the 

function better and better. I ask them if they continued this forever, would the series 

fit the entire function? Or is there some x value beyond which the series just won’t fit, 

no matter how many terms are added on? How do they know? This usually prompts 

a good discussion and provides a motivation for looking for these x values where the 

series “fits” or converges to the function.

Next I like to introduce a second example that has a limited interval of convergence, 

for instance, the function g x
x

( ) =
−
1

1
, and look at several of its partial sums. In 

this case it becomes readily apparent that this series is a good fit only in a small 

interval. Students easily see that it is not good for any approximations when x is 

greater than 1, and they may also guess the lower bound of the interval to be –1. I 

ask them why this happens, and since we have discussed infinite geometric series 

previously, we can usually come to the realization that this function can be thought 

of as the sum of a geometric series with first term 1 and ratio x. They then make the 

connection that it converges only when x < 1 .
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The next issue we consider is what happens if the series doesn’t appear to 

converge for all values of x but is not geometric. How can we determine the interval of 

convergence? 

We are now ready to return to part (c) of 2005 BC, #6. If we take our answer 

from part (b) and write the general term of the series we get 
1

3 2
22

2
n

n

n
x

( )
−( )· . 

Or by rearranging a bit we can write it as 
1

2

2

3

2

n

x n

·
−



 . In this form it looks like 

some relative of a geometric series. We look at the graphs of some of the partial 

sums and try to make an estimate as to where the series will converge. Based on 

the graphs students usually agree that the series converges for x = 3 and x = 4, but 

might wonder about x = 5 and anything greater. So we try out one or more of these x 

values to see what the series looks like if we substitute them in place of x.
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For instance, if x = 3 the general term becomes 
1

2

1

3

2

n

n

·

 . The second factor here 

is the nth term of a convergent geometric series. Students can then reason that the 

first factor is less than 1 and thus makes the terms of the actual series smaller than 

those of the convergent geometric series. So the series converges when x = 3. I have 

students investigate other values of x. They quickly realize that for x > 5 the geometric 

part of this series diverges and the first factor probably doesn’t compensate for this 

divergence. A good discussion usually surrounds the case of x = 5. In this case the 

first factor essentially becomes one-half the nth term of the harmonic series. I like to 

encourage this discussion as students wrestle with this important series. Eventually 

we are led to looking at the series graphically and thinking about the integral 

associated with the function f x
x

( ) =
1

. 

The areas of the rectangles represent the terms of the harmonic series 
1

1 nn=

∞

∑ . The 

sum of their areas is clearly larger than the area under the curve. We have studied 

this function and the improper integral 
1

1 x
dx

∞

∫  and know that it is divergent. So it is 

logical that the harmonic series is also divergent. We often have to go back and redo 

this integral, but since this is such an important result, I think the time spent is worth 

it. Students are now ready to state the upper bound of the interval of convergence as 5 

(with divergence at x = 5). By similar reasoning they realize that the series will diverge 

if x < –1. The next question is whether it converges at x = –1. Because of the 2n in the 

exponent, the series is identical to that when x = 5 so it diverges here as well. 
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At this point I like students to try these ideas on their own, and I ask them to 

investigate the Taylor series for cos(x) along with another series such as 
x

n

n

n
n

−

=

∞

∑
1

1 3·  
for 

their homework. They should be able to use the graphs of the partial sums and their 

reasoning about geometric series, along with the harmonic series to find the intervals 

of convergence for these series. In 
x

n

n

n
n

−

=

∞

∑
1

1 3·
, one endpoint of the interval creates an 

alternating series. I ask students to think about this and try to reason out on their own 

whether it will converge. They usually decide that if the partial sums are oscillating 

and those oscillations are getting smaller, the series will converge. This informal 

understanding of the ideas behind the alternating series test helps them when we 

study it formally later. They are also motivated to learn the ratio test the next day in 

order to make this search for the interval of convergence a bit easier. 

Day 2: A Procedure for Determining the Interval  
of Convergence 

During the next class we look at the ratio test and practice its use. I do not formally 

prove the test, but rather present it with the sort of informal reasoning outlined below.

The Ratio Test

Suppose the limit lim
n

n

n

a
a→∞

+ =1 L L either exists or is infinite.

Then 

a. If L < 1, the series an
n=

∞

∑
1

 converges.

b. If L > 1, the series an
n=

∞

∑
1

 diverges.

c. If L = 1, the test is inconclusive.

If L < 1, this means that successive terms are getting larger and it is logical that 

the series diverges.

If L < 1, this means that successive terms are getting smaller and it is possible 

that the series converges. Look a bit more closely at the terms of a power series 

c xn
n

n=

∞

∑
0

, where a
n
 = c

n
xn. The power on x increases regularly. This is like a geometric 
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series. Of course, the coefficients don’t always change by the same ratio, but we can 

still think of this as a sort of cousin to a geometric series. The ratio formed in the limit 

is less than some number r for a geometric series. Since the limit is less than 1, you 

can pick a number for r that is also less than 1 and above the ratio 
a

a
n

n

+1
. So our series 

is less than this convergent geometric series and it makes sense that if L < 1, the 

series will converge. 

When L = 1 the result is inconclusive. In the harmonic series, L = 1 and the series 

diverges. However, the series 
1

2
1 nn=

∞

∑  has L = 1 again, but this series converges. So if L 

= 1, we can’t say whether the series converges. 

We go back and apply the ratio test to part (c) from 2005 AP Calculus BC, #6, and 

get the following:

lim
·

·
n

n
n

n

n
x

n
x

→∞

+( )
+( )

+( )
−( )

−

1
2 1

1
3

2

1
2

1
3

2 1
2 1

2 22

2

2 1

3

3 3
2

2

2

2 2
2

( )
=

+( )
−( ) =

→∞ →n n

n

n n

n

n
xlim · · lim

∞∞ +
−( )

=
−( )n

n

x x

1

2

9

2

9

2 2

· . 

The series converges when this limit is less than 1: 

x
x x

−( )
< −( ) < − <

2

9
1 2 9 2 3

2
2or or . 

Written this way we can see the set of solutions to this inequality as an interval 

centered at 2 with a radius of 3. Here ideas of function transformations can help 

a student to understand the relationship of an inequality like this to the parent 

inequality x < 1 . The radius of this interval is called the radius of convergence.  

In this case, − < <1 5x  is a subset of the interval of convergence. In order to complete 

the analysis of this interval of convergence, the behavior at the endpoints must 

be investigated. After the hard work of graphing partial sums and checking values, 

students find using the ratio test to be much simpler and more direct. Checking the 

endpoints then becomes our challenge, and we review the work we did the previous 

day.

	 For x = –1, the series becomes 7
3

2 3
7

1

2

12

2
1 1

+
−( )

= +
=

∞

=

∞

∑ ∑
n

n
n nn n·

. This series is the 

harmonic series and it diverges.
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	 For x = 5, the series becomes 7
3

2 3
7

1

2

12

2
1 1

+ = +
=

∞

=

∞

∑ ∑
n

n
n nn n·

. This series diverges 

because of its relationship to the harmonic series. Thus the interval of convergence is 

–1 < x < 5.

	 Since quite often when evaluating the endpoints of an interval, the series can 

be compared to a harmonic or alternating harmonic series, it is now appropriate to 

formalize the alternating series test. 

Alternating Series Test

If a series is of the form −( ) +

=

∞

∑ 1 1

1

n
n

n

a , where all a
n
 > 0 and 0 < a

n+1
 < a

n
 for all n 

greater than some integer N, and lim
n

na
→∞

= 0 , then the series converges.

When the hypotheses are not satisfied, other convergence tests must be used. See the 

article “Overview of Tests for Convergence of Infinite Series” for more details on this 

topic.

I next like to work through several problems where students have the opportunity 

to put these tests into practice. 

2000 BC, #3

The Taylor series about x = 5 for a certain function f converges to f (x) for all values 

of x in the interval of convergence. The nth derivative of f at x = 5 is given by 

f
n

n
fn

n

n
( ) ( ) =

−( )
+( )

( ) =5
1

2 2
5

1

2

!
, and .

a.	 Write the third-degree Taylor polynomial for f about x = 5.

Solution: The coefficients of the polynomial are given by 
f

n n

n n

n

( ) ( )
=

−( )
+( )

5 1

2 2!
.

using n = 1, 2, and 3 creates P x x x x3
2 31

2

1

6
5

1

16
5

1

40
5( ) = − −( ) + −( ) − −( ) .

b. Find the radius of convergence of the Taylor series for f about x = 5.

Solution: Using the ratio test 
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lim
n

n n

n

n n

n

x
n
x→∞

+ +

+

−( ) −( )
+( )

−( ) −( )

1 5
2 3
1 5
2

1 1

1

nn

n x

n

n
n n

+( )

=
− +( ) −( )

+( )
=

+
→∞ →∞

2

1 2 5

2 3

1

2
lim lim ·

22

3
5

5

2

( )
+( )

− =
−

n
x

x

.

If this limit is less than 1, the series will converge: 
x

x
-

-
5

2
1 5 2< <or .  

	 From here we can see the interval of convergence is centered at 5 with a radius 

of 2. The problem did not ask for the actual interval, but it’s good practice to go ahead 

and work this out. So far we have the interval 3 < x < 7.

Now check the endpoints.

If x = 3, the series becomes 
  

−1( )n −2( )n

2n n + 2( )n=0

∞

∑ =
2( )n

2n n + 2( )n=0

∞

∑ =
1

n + 2( )n=0

∞

∑ . It diverges 

because of its relationship to the harmonic series.

If x = 7, the series becomes 
  

−1( )n 2( )n

2n n + 2( )n=0

∞

∑ =
−1( )n

n + 2( )n=0

∞

∑ , which is an alternating 

harmonic series and thus converges.

So the interval of convergence is 3 < x ≤ 7.

c. �Show that the sixth-degree Taylor polynomial for f about x = 5 approximates 

f (6) with error less than 
1

1000 .

Solution: Since x = 6 is in the interval of convergence, we can use the series 

to approximate the value of f(6). But how good is our approximation? If students 

substitute x = 6 in the sixth-degree polynomial, it will look like this:

f(6)  ≈	
1  

– 
 1  

+ 
  1   

– 
   1 

  + 
   1    

– 
   1   

 +  
   1    

= 
  6787   

≈  0.3787.
	 2      6      16       40        96       224       512	     17920

Ask students if this is more or less than the sum of the entire series. By looking at the 

signs they should realize that this is more than the actual sum. Ask students how 

much the next term will change this total. Since the next term is subtracted, it will 

decrease the sum by 
1

1152
. Then ask them to think about how close they were to the 
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actual sum. Since decreasing the sum by 
1

1152
 causes the total to go from too big 

to too small, you were less than this far from the actual sum. Since this is less than 

the requested accuracy, the error in this approximation is within 
1

1000
 of the actual 

value. This sort of reasoning should lead students to the realization that when a series 

satisfies the conditions of the alternating series test, the error in any partial sum is 

less than the next term.

2002 BC, #6

The Maclaurin series for the function f is given by 

  
f x( )=

2x( )n+1

n + 1
= 2x +

4x2

2
+

8x3

3
+

16x4

4
+…+

2x( )n+1

n + 1
+…

n=0

∞

∑

on its interval of convergence.

a.	 Find the interval of convergence of the Maclaurin series for f. Justify your 

answer.

Parts (b) and (c) deal with manipulation of Taylor and Maclaurin series, which is 

covered in the “Manipulation of Power Series” section of this Special Focus.

Solution:

Apply the ratio test 

  

lim
n→∞

2x( )n+ 2

n + 2
2x( )n+1

n + 1

= lim
n→∞

n + 1( )
n + 2( )2x = 2x . 

This indicates the series converges if 
  
−

1
2

< x <
1
2

. But what about the endpoints?

If 
  
x = −

1
2

, the series becomes 
  

−1( )n+1

n + 1n=0

∞

∑ , an alternating harmonic series, so it 

converges.

If 
  
x =

1
2

 , the series becomes 
  

1
n + 1n=0

∞

∑ , the harmonic series, so it diverges.

Thus the interval of convergence is -
1

2

1

2
≤ x < .
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After discussing these problems I present students with a problem like 2005 BC, 

Form B, #3. This is a nice problem that ties together understanding the meanings of 

the first several terms of the Taylor series, constructing the series from a definition 

of the derivatives and finding the radius of convergence. Doing this as a homework 

assignment helps students to discover just where they have questions on this process. 

In class we also work to find the actual interval of convergence to make the problem a 

complete summary of the work done so far. Evaluating convergence at the endpoints 

is not as easy here as in the problems presented thus far, and it will take some work 

together as a group to come to the right conclusions and justifications.

2005 BC, #3

The Taylor series about x = 0 for a certain function f converges to f (x)  for all values 

of x in the interval of convergence. The nth derivative of f at x = 0 is given by 

  
f n( ) 0( )=

−1( )n+1 n + 1( )!
5n n − 1( )2  for n ≥ 2.  The graph of f has a horizontal tangent line at x = 0 

and f (0) = 6. 

a. 	 Determine whether f has a relative maximum, a relative minimum, or 

neither at x = 0. Justify your answer.

Solution: By the second derivative test, f has a relative maximum at x = 0 because 

f ′(0) = 0 (due to the horizontal tangent) and f ′′(0) < 0.

b. 	 Write the third-degree Taylor polynomial for f about x = 0. 

Solution: Using the given information 

  

f 0( )= 6, ′f 0( )= 0, ′′f 0( )= −
3!

5212 = −
6
25

, ′′′f 0( )=
4!

5322 =
6

125

P x( )= 6 −
3
25

x2 +
1

125
x3

c.	 Find the radius of convergence of the Taylor series for f about x = 0. Show 

the work that leads to your answer. 

Solution: Using the ratio test:

  

lim
n→∞

−1( )n+ 2 n + 2( )
5n+1n2 xn+1

−1( )n+1 n + 1( )
5n n − 1( )2 xn

= lim
n→∞

−1 n + 2( ) n − 1( )2 x
5 n + 1( ) n( )2 = lim

n→∞

n + 2
n + 1







n − 1
n







2 x
5

=
x
5
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The series converges if |x| < 5 or –5 < x < 5 . The radius of convergence is 5. But what 

about those pesky endpoints?

If x = –5 , the series becomes

 

  
6 +

−1( )n+1 n + 1( ) −5( )n

5n n − 1( )2 = 6 +
(−1) n + 1( )

n − 1( )2
n= 2

∞

∑
n= 2

∞

∑ = 6 −
n + 1( )
n − 1( )2

n= 2

∞

∑ .

Because the numerator of each term of this series is one degree less than the 

degree of the denominator, this series is reminiscent of the harmonic series. Note 

that 
n + 1
n − 1( )2 >

n − 1
n − 1( )2 =

1
n − 1

, the nth term of a shifted harmonic series, which is 

divergent. So the series 
n + 1( )
n − 1( )2

n=2

∞

∑  diverges by comparison, and thus so does the 

series 

  
6 −

n + 1( )
n − 1( )2

n= 2

∞

∑ . 

If x = 5, the series becomes 

  
6 +

−1( )n+1 n + 1( ) 5( )n

5n n − 1( )2 = 6 +
−1( )n+1 n + 1( )

n − 1( )2
n= 2

∞

∑
n= 2

∞

∑
.

In this case, the series alternates and satisfies the conditions of the alternating series 

test, so it converges. The interval of convergence is then –5 < x ≤ 5.

Day 3: Some Interesting Questions About Convergence

Students are now familiar with constructing Taylor series and identifying the radius of 

convergence. The verification of endpoint convergence is something we will continue 

to work on as we develop the convergence tests more fully. However, it is helpful to 

take some time to discuss questions about convergence that may not have otherwise 

occurred to students. We have seen that the series for sin(x)converges for all values 

of x, but how do we know it converges to the function sin(x) and not something else? 

This question may seem silly at first to students, but it is worth examining. 

It is possible for a series to converge and yet not converge to the function used 

to construct it. In order to show that a series does indeed converge to the original 

function, we must examine what happens to the error. 
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If f and all its derivatives are continuous and P
n
(x) is the nth 

degree Taylor approximation to f (x) about x = a, then the error, 

  
En x( ) = f x( )− Pn x( ) ≤

M
n + 1( )! x − a n+1

, where M is the maximum value of f (n+1) on 

the interval between x and a.

Applying this formula to f (x)= sin(x) and its series expansion 

E x x x x x x x
nn

n n

( ) = − − + − + +
−( )

+

+

sin
! ! !

3 5 7 2 1

3 5 7
1
2 11

1
1

1

( ) ≤
+( )

+

! !n
x n , where 

we use M = 1 because all derivatives of f (x)= sin(x) have a maximum value of 1, 

and a = 0 because the series is centered at 0. If this error has a limit of 0, then the 

series converges to the function f (x)= sin(x) for all values of x in the interval of 

convergence. This means we must show that 
  
lim
n→∞

x n+1

n + 1( )! = 0 . Using a calculator 

and experimenting with various values of 

€ 

x  and large values of n provides evidence 

that this limit statement is true. To consider the limit more analytically, select a 

positive integer N such that N > 2|x |. Note that for n ≥ N, 

€ 

x
n

< 1
2

, the expression 

in the limit contains factors such as x

n

x

n

x

n
L

n+

+( ) +( ) +( )
⋅

1

1 2 3!
· ·

 
… . For n ≥ N, each 

factor of 

€ 

x
n + k( )

 in the expression will be less than 
1

2
. So for 

€ 

n ≥ N  we can state 

· ·
x

n

x

N

x

N

x

n

x

N

n N N

n N

+

+( ) +
≤

1

1 1

1

2! !
·

!
· -

L≤ . Thus the limit will go to 0 as n→∞. Therefore 

the Taylor series for sin(x) converges to this function for all values of x. Students can 

work through similar arguments to show that the series for cos(x) converges to cos(x) 

for all x, and that the series for ex converges to ex for all values of x.

It may be instructive to look at a series that does not converge to the function 

that is used to construct it. For instance, the function
  
f x( )= e−1/x2

x ≠ 0
0 x = 0






 has 

derivatives at x = 0 that are all equal to 0. (We need to use the limit definition of the 

derivative to show this.) The Taylor series for the function is simply a series of zeroes. 

This series certainly converges regardless of the value of x, and it converges to 0 for 

all values of x. So it does not converge to f (x)  for any values of x but 0. Students do not 

L
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generally encounter functions like this in an introductory course, but should be aware 

that they exist and not take for granted that every Taylor series converges to the 

function used to construct it.

A second interesting question is, “Can a Taylor series converge to different 

functions on different parts of its interval of convergence?” Again this may seem 

counterintuitive, but it can happen in some sense. Consider the series 
  

−1( )n xn

2n( )!n=0

∞

∑
. Graphing a few of the partial sums shows different behavior on each side of 

0. Using the ratio test we find that the series converges for all values of x. This 

happens to be the series you get if you replace x in the series for cos(x) with  x
. The function cos x( )  is not defined for x < 0 if we stay in the real number system. 

So what does it converge to when x < 0? Students may not have learned about the 

hyperbolic functions, but this series actually converges to cos x( ) when x < 0. For 

some students it will be sufficient to see that this function does “match” the series 

when x is negative. An activity sheet is provided to help students work through the 

demonstration of the relationship.

A third question that can be explored is, “Is every series that converges to some 

function a Taylor series, for that function?” Since students have been focusing on 

Taylor series, it is natural for them to think that any convergent series is a Taylor series. 

However, consider the series
   

x2

1 + x2( )n
n=0

∞

∑ .

This is a geometric series. Using the principles for 

finding where a geometric series converges, you 

find the following: 
  

1
1 + x2 < 1 so 1 < 1 + x2  or x2 > 0 .  

If we use x = 0, the series is convergent to 0 

because all terms are 0. So this series converges for 

all values of x. If you apply the formula for the sum 

of a convergent geometric series, you get: 

  

x2

1 − 1
1 + x2( )

=
x2

1 + x2 − 1
1 + x2

=
x2

x2

1 + x2

= 1 + x2  for x ≠ 0. So here we have a series that 

converges everywhere, but to different functions for different values of x. 
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However, it is clearly not a Taylor series since the Taylor series for a polynomial is 

simply that polynomial. While students are not apt to encounter series like this in this 

course, it is nevertheless valuable for them to realize that such things can happen and 

that not everything is as simple as applying the ratio test and recognizing harmonic 

series. 

The materials that follow are investigations that can be given to students.

Investigation 1: Convergence of a Taylor Series

1. 	 Write the Taylor series for f (x)=sin(x).

2. 	 Graph the following Taylor polynomials for f (x)=sin(x) along with 

f (x)=sin(x):T
5
(x), T

11
(x), T

17
(x). Record a sketch of your graphs here.

3.	 Based on your graph above, for what values of x do you think you could use the 

series to approximate the values of f (x)=sin(x)? Explain.
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4. 	 Write the Maclaurin series for   
f x( )=

1
1 − x . (Hint: Think of this function as the 

sum of an infinite geometric series.)

5. 	 Graph the following Taylor polynomials for 
  
f x( )=

1
1 − x

 along with 	
  
f x( )=

1
1 − x

: 

  T4 x( ),T7 x( ),T12 x( ). Record a sketch of your graphs here.

6. 	 Based on your graph above, for what values of x do you think you could use the 

series to approximate the values of 
  
f x( )=

1
1 − x

? Justify your answer using ideas 

of convergent geometric series.

7. 	 When you know the function that was used to create a Taylor series, you can 

often look at the graphs of some of the polynomials and estimate the interval of 

convergence from those graphs. However, when you are simply given the series 
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for an unknown function, it may be a bit harder to determine its interval of 

convergence from the graph. Consider the series 
  

xn−1

n·3n
n=1

∞

∑ . Write the first four terms 

of the series.

8. 	 Graph several of the partial sums of this series and estimate the interval of 

convergence based on your graphs.

9.	 To check your interval of convergence, you can look at the series you obtain if you 

substitute a value for x. For instance, if you evaluate the series for x = 2, you have 

  

2n−1

n·3n
n=1

∞

∑  or 2
3







n 1
2nn=1

∞

∑ . This new series should remind you of a geometric series 

with its nth term multiplied by another factor. Study the following argument for the 

convergence of this series:

(i)	

€ 

2
3

 
 
 

 
 
 

n

n=1

∞

∑  converges because it is a geometric series with |r| <1.

(ii)	

€ 

1
2n

<1 for all values of n ≥ 1.

(iii)	

€ 

2
3

 
 
 

 
 
 

n

n=1

∞

∑ ⋅ 1
2n

 converges because its terms (all of which are positive) are less 

than those of the geometric series. So this sum will be less than the sum of the 

geometric series.

	 Think about putting other values in place of x. How large can x be if the series 

is still to converge? In other words, what is the upper bound of the interval of 

convergence?
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10. If you substitute a negative value for x, the terms of the series will alternate in 

sign. You will learn an official test for alternating series convergence later, but 

for now think about what happens when you add up a string of numbers that 

alternate in sign. If the terms you are summing are getting closer and closer to 

zero then the partial sums behave something like the picture below, where the 

upward arrows represent positive terms and the downward arrows represent 

negative terms. If more terms were added you can imagine that the series would 

converge to some point between the high and low, something like a spring 

bouncing and finally coming to rest at an equilibrium position.

	

	 For the series 
  

xn−1

n·3n
n=1

∞

∑ , what negative values of x would result in the convergence 

of the series? In other words, what is the lower bound of the interval of 

convergence?

Investigation 2: The Ratio Test

When a series is geometric, it is easy to tell when it converges. However, if the series 

is not geometric and not closely related to a geometric series, it can be more difficult 

to find this interval of convergence. In this investigation you will look for relationships 

based on the ideas of geometric series that will be useful in determining the 

convergence of other series.

1. 	 The terms of a geometric series have a constant ratio. That is, 
  

an+1

an

is always the 

same, no matter which two consecutive terms you use. The series converges if 

this ratio has an absolute value less than one. In nongeometric series this ratio is 

not constant, it can change with each pair of terms. However, since the series is 

infinite it is reasonable to look at the limit of this ratio to discover the behavior of 

the terms in the long run. 
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Below are two lists of series. For each one determine
   
lim
n→∞

an+1

an

.

	 Converging Series		  Diverging Series

	   

2
n2 + 1n=0

∞

∑ 				  
  

1
n

3
2







n

n=1

∞

∑

	   

6
7







n

n=0

∞

∑ 				  
  

n
n + 1n=1

∞

∑

	   

2n

n!n=0

∞

∑
	

			 
  

n!
n2

n=1

∞

∑

	   

n!( )2

2n( )!n=0

∞

∑ 				  
  

2n

n2
n=1

∞

∑

2. 	 If the limit of this ratio is less than 1, what seems to be true about the series? Why 

is this reasonable?

3. 	 If the limit of the ratio is more than 1, what seems to be true about the series? Why 

is this reasonable?

4. 	 If the limit of the ratio is 1, what seems to be true about the series? Why is this 

reasonable?

5.	 Using what you have discovered, for what interval of values do you think the series 

  

x − 2( )n

10n
n=0

∞

∑  will converge?
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6. 	 The results you discovered are summarized as the ratio test for convergence. It will 

be one of the most useful tests you learn for finding the interval of convergence of 

a Taylor series.

The Ratio Test

Suppose the limit 
  
lim
n→∞

an+1

an

= L
 
L  either exists or is infinite.

Then 

a.	 If L  < 1, the series 

€ 

an

n=1

∞

∑  converges.

b.	 If L  > 1, the series 

€ 

an

n=1

∞

∑  diverges.

c.	 If L  = 1, the test is inconclusive.

Investigation 3: A Series That Converges to Two 
Different Functions (in Form)

1. 	 Write the first four nonzero terms and general term of the Maclaurin series for 

f (x)=cos(x).

2. 	 You know that you can create a series for cos(g (x))
 
by replacing each x in the 

series with g (x). You have done this with such functions as g (x)  = x2. Now use 

this idea to write a series for

€ 

f x( )= cos x( )  .

3. 	 Find the interval of convergence for your series. 
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4. 	 Verify by graphing that the series seems to converge to the original function for  

x ≥ 0. Sketch a graph of 

€ 

f x( )= cos x( ) and two different series approximations to 

show this convergence.

5. 	 What happens when x < 0? The interval of convergence indicates that the series 

will still converge, but 

€ 

f x( )= cos x( ) is not defined for x < 0. What will the series 

converge to then? We can find an answer to this question by examining the 

function (called the hyperbolic cosine function) cosh x
e ex x

( ) =
+ −

2
. Write the 

series for ex here.

6. Write the series for e-x here.

7. Use the two series from steps 5 and 6 to get a series for cosh(x).

8. Use the series from step 7 to get a series for cos x( ) .

9. For x < 0, use the series from step 8 to get a series for cosh −( )x .

10. Let h (x)  be the function represented by the series in step 2. Express h (x)  in 

terms of the cos x( )  and cosh −( )x . Verify by graphing cosh −( )x and two 

different series approximations to illustrate convergence for x < 0.
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Teacher Notes on the Investigations

Investigation 1: Convergence of a Taylor Series

1.	 Write the Taylor series for f (x)  = sin(x).

	
f x x

x x x x

n
n

n

( ) = − + − + + −( )
+( )

+3 5 7 2 1

3 5 7
1

2 1! ! !
...

!
++ ...

2.	 Graph the following Taylor polynomials for f (x)  = sin(x)  along with f (x)  = sin(x): 

T
5
(x),  T

11
(x),  T

17
(x). Record a sketch of your graphs here.

	

3. 	 Based on your graph above, for what values of x do you think you could use the 

series to approximate the values of f (x)  = sin(x)? Explain.

	 It appears that as you add more terms to the polynomial, it fits a larger portion of 

the curve. Since the series is infinitely long, it is reasonable that the series would 

fit the entire function. So you could use it to approximate values of
 
f (x)  = sin(x)  for 

all values of x. However, if the x value is far from zero, it would take many terms to 

have a good approximation. 

4. Write the Maclaurin series for 
  
f x( )=

1
1 − x

. (Hint: Think of this function as the sum 

of an infinite geometric series.)

	 f x x x x x n( ) = + + + + + +1 2 3 ... ...
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5. 	 Graph the following Taylor polynomials for 
  
f x( )=

1
1 − x

 along with 
  
f x( )=

1
1 − x

: 

T
4
(x),  T

7
(x),  T

12
(x). Record a sketch of your graphs here.

6.	 Based on your graph above, for what values of x do you think you could use the 

series to approximate the values of 
  
f x( )=

1
1 − x

? Justify your answer using ideas 

of convergent geometric series.

	 The series appears to “match” the function well in the interval –1 < x < 1. 

This is reasonable because it is a geometric series with ratio x, and thus converges 

when |x| < 1.

7. 	 When you know the function that was used to create the Taylor series, you can 

often look at the graphs of some of the polynomials and estimate the interval of 

convergence from those graphs. However, when you are simply given the series 

for an unknown function, it may be a bit harder to determine its interval of 

convergence from the graph. Consider the series 
  

xn−1

n·3n
n=1

∞

∑ . Write the first four terms 

of the series.

	   
1
3

+
x

2·32 +
x2

3·33 +
x3

4·34

8. 	 Graph several of the partial sums of this series and estimate the interval of 

convergence based on your graphs.
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	 Based on the graphs of partial sums students may estimate the interval of 

convergence to be –4 < x < 3. This is not the correct interval, but because the 

series actually converges for x = –3, students may think the interval extends 

beyond this value. 

9. 	 To check your interval of convergence, you can look at the series you obtain if you 

substitute a value for x. For instance, if you evaluate the series for x = 2, you have 

  

2n−1

n·3n
n=1

∞

∑  or 2
3







n 1
2nn=1

∞

∑ . This new series should remind you of a geometric series 

with its nth term multiplied by another factor. Study the following argument for the 

convergence of this series: 

(i)	

€ 

2
3

 
 
 

 
 
 

n

n=1

∞

∑  converges since it is a geometric series with |r| < 1.

(ii)	

€ 

1
2n

<1 for all n ≥ 1.

(iii)	

€ 

2
3

 
 
 

 
 
 

n

n=1

∞

∑ ⋅ 1
2n

 converges because its terms (all of which are positive) are less 

than those of the geometric series. So this sum will be less than the sum of the 

geometric series.

	 Think about putting other values in place of x. How large can x be if the series 

is still to converge? In other words, what is the upper bound of the interval of 

convergence?
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	 If x = 3, this series becomes the harmonic series and will diverge. For any 

positive value less than 3, however, the series will converge. 

10. 	If you substitute a negative value for x, the terms of the series will 

alternate in sign. You will learn an official test for alternating series 

convergence later, but for now think about what happens when you 

add up a string of numbers that alternate in sign. If the terms you are 

summing are getting closer and closer to zero, then the partial sums 

behave something like the picture below, where the upward arrows 

represent positive terms and the downward arrows represent negative 

terms. If more terms were added you can imagine that the series would 

converge to some point between the high and low, something like a 

spring bouncing and finally coming to rest at an equilibrium position.

	

	 For the series
  

xn−1

n·3n
n=1

∞

∑ , what negative values of x would result in the 

convergence of the series? In other words, what is the lower bound of the 

interval of convergence?

	 When trying to find the lower bound by substituting values of x, students 

will find that if they use a number less than –3, the “geometric” factor in 

the series is divergent. Using x = –3, they create an alternating harmonic 

series. Students should be able to reason that this will converge because the 

terms being added alternate in sign and get smaller in absolute value. When 

discussing this question, you may wish to formally state the alternating 

series test and show how it applies here.

Investigation 2: The Ratio Test

When a series is geometric, it is easy to tell when it converges. However, if the series 

is not geometric and not closely related to a geometric series, it can be more difficult 

to find this interval of convergence. In this investigation you will look for relationships 
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based on the ideas of geometric series that will be useful in determining the 

convergence of other series.

1. 	 The terms of a geometric series have a constant ratio. That is, 
  

an+1

an

 is always the 

same, no matter which two consecutive terms you use. The series converges if 

this ratio has an absolute value less than 1. In nongeometric series this ratio is 

not constant; it can change with each pair of terms. However, since the series is 

infinite it is reasonable to look at the limit of this ratio to discover the behavior of 

the terms in the long run. 

	 Below are two lists of series. For each one determine lim
n

n

n

a

a→∞

+1 .

	 Converging Series		  Diverging Series

	   

2
n2 + 1n=0

∞

∑ 	
  
lim
n→∞

an+1

an

= 1 		
  

1
n

3
2







n

n=1

∞

∑ 	
  
lim
n→∞

an+1

an

=
3
2

	   

6
7







n

n=0

∞

∑ 	
  
lim
n→∞

an+1

an

=
6
7 	

	
  

n
n + 1n=0

∞

∑ 	
  
lim
n→∞

an+1

an

= 1

	   

2n

n!n=1

∞

∑ 	
  
lim
n→∞

an+1

an

= 0 		
  

n!
n2

n=1

∞

∑
  
	

  
lim
n→∞

an+1

an

= ∞

	   

n!( )2

2n( )!n=0

∞

∑ 	
  
lim
n→∞

an+1

an

=
1
4

		
  

2n

n2
n=1

∞

∑
  
	

  
lim
n→∞

an+1

an

= 2

2.	 If the limit of this ratio is less than 1, what seems to be true about the series? Why 

is this reasonable?

	 The series converges. When the limit of the ratio is less than 1, it means the 

terms of the series are approaching 0 and are doing so in a way such that each 

pair of successive terms has a smaller ratio than the pair before. This is just like a 

geometric series with a ratio less than 1, and thus the series converges.

3. 	 If the limit of the ratio is more than 1, what seems to be true about the series? Why 

is this reasonable?

	 The series diverges. When the limit of the ratio is greater than 1, it means the 

terms of the series are growing in size. With each additional term the total 

changes by more than it did when the previous term was added. Thus the sum 

cannot be approaching a single value and the series diverges.

4.	 If the limit of the ratio is 1, what seems to be true about the series? Why is this 

reasonable?
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	 The series might converge or it might diverge. Both outcomes are possible if the 

limit of the ratio is one. When the limit of the ratio is one this means that the terms 

are becoming more and more alike. If they are also becoming smaller at a fast 

enough rate, the series will converge. However, if they are either not approaching a 

limit of 0 or not doing so quickly enough, as in the harmonic series, the series will 

diverge.

5. 	 Using what you have discovered, for what interval of values do you think the series 

  

x − 2( )n

10n
n=0

∞

∑  will converge?

	 This is a geometric series with ratio 
  
x − 2
10

 so the series will converge when 

  

x − 2
10

< 1 or x − 2 < 10 . This describes an interval of radius 10 centered at 2. 

So the interval of convergence is –8 < x < 12. There is no convergence at the 

endpoints since this is a geometric series.

6. 	 The results you discovered are summarized as the ratio test for convergence. It will 

be one of the most useful tests you learn for finding the interval of convergence of 

a Taylor series.

The Ratio Test

Suppose the limit 
  
lim
n→∞

an+1

an

= L L either exists or is infinite.

Then 

a. 	 If L < 1, the series 

€ 

an

n=1

∞

∑  converges.

b.	  If L > 1, the series 

€ 

an

n=1

∞

∑  diverges.

c.	 If L = 1, the test is inconclusive.

Investigation 3: A Series That Converges to Two Different Functions 
(in Form)

1.	 Write the first four nonzero terms and general term of the Maclaurin series for f (x) 

= cos(x).

	 1
2 4 6

1
2

2 4 6 2

− + − + + −( )
( )

+
x x x x

n
n

n

! ! !
...

!
...
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2. 	 You know that you can create a series for cos(g (x))by replacing each x in the 

series with g (x). You have done this with such functions as g (x)  = x 2. Now use 

this idea to write the series for 

€ 

f x( )= cos x( ).
	 1

2 4 6
1

2

2 3

− + − + + −( )
( )

+
x x x x

n
n

n

! ! !
...

!
...

3. 	 Find the interval of convergence for your series.  

Using the ratio test, the series converges for all values of x.

4. 	 Verify by graphing that the series seems to converge to the original function for x 

> 0. Sketch a graph of 

€ 

f x( )= cos x( ) and two different series approximations to 

show this convergence.

5. 	 What happens when x = 0? The interval of convergence indicates that the series 

will still converge, but 

€ 

f x( )= cos x( ) is not defined for x < 0. What will the series 

converge to then? We can find an answer to this question by examining the 

function (called the hyperbolic cosine function) 

€ 

cosh x( )= ex + e−x

2
. Write the series 

for ex here.

	
  

€ 

ex =1+ x + x 2

2!
+ x 3

3!
+ x 4

4!
+L

6. 	 Write the series for e–x here.

	   

€ 

e−x =1− x + x 2

2!
− x 3

3!
+ x 4

4!
− + x 5

5!
+L

  

€ 

e−x =1− x + x 2

2!
− x 3

3!
+ x 4

4!
− + x 5

5!
+LL

L
  

€ 

e−x =1− x + x 2

2!
− x 3

3!
+ x 4

4!
− + x 5

5!
+L
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7. 	 Use the two series from steps 5 and 6 to get a series for cosh(x). 

Adding the two series from steps 5 and 6 we get 

	
  

€ 

ex + e−x =1+ x + x 2

2!
+ x 3

3!
+ x 4

4!
+L+1− x + x 2

2!
− x 3

3!
+ x 4

4!
+L = 2 + 2 x 2

2!
+ 2 x 4

4!
+L

. 

	 Thus 

	
  

€ 

cosh x( )= 1
2

ex + e−x( )=1+ x 2

2!
+ x 4

4!
+L = x 2n

2n( )!
n= 0

∞

∑ .

8. 	 Use the series from step 7 to get a series for cosh x( ).

	
  

€ 

cosh x( )=1+
x( )2

2!
+

x( )4

4!
+L =

x( )2n

2n( )!
n= 0

∞

∑ = xn

2n( )!
n= 0

∞

∑
9. 	 For 

€ 

x < 0 , use the series from step 8 to get a series for cosh −( )x .

	

€ 

cosh −x( )=
−x( )2n

2n( )!
n= 0

∞

∑ =
−x( )n

2n( )!
n= 0

∞

∑ =
−1( )n xn

2n( )!
n= 0

∞

∑
10.	Let 

€ 

h x( ) be the function represented by the series in step 2. Express h (x)  in 

terms of the cos x( )  and
 
cosh −( )x . Verify by graphing cosh −( )x  and 

two different series approximations to illustrate convergence for x < 0.

	

€ 

h x( )=
cos x( ) if x ≥ 0

cosh −x( ) if x < 0

 
 
 

  

 
 
 

  
=

cos x( ) if x ≥ 0

cosh x( ) if x < 0

 
 
 

  

 
 
 

  

	 A graph is given by:

L

L

L

L L
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Students are likely to be unfamiliar with the hyperbolic functions. The connections 

between the hyperbolic functions and the trigonometric functions are interesting 

and somewhat unexpected. One can also use complex numbers to explore the 

relationships between these two types of functions. 

For example, since i2n equals 1 when n is even and –1 when n is odd, it is easy to 

use the Maclaurin series for cos(x) to check that cos( ix)  = cosh(x). Alternatively, this 

identity follows from the identity eiθ = cos(θ) + isin (θ), which plays a very important 

role in complex analysis.

Many students find complex numbers fascinating, and when they realize that 

there is a meaning to the sine or cosine of an imaginary number they are intrigued. 

Students interested in this topic could investigate what happens with the series for 

sin(x)when x is replaced by  x . This will lead to the identity sin( ix)  = isinh(x).
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Overview of Tests for Convergence of 
Infinite Series
Mark Howell 
Gonzaga College High School 
Washington, D.C. 

To the Teacher

By the time students have seen all of the tests for convergence of infinite series they 

are usually overwhelmed by the sheer number of tests. Moreover, the number of ways 

of asking a question that requires the use of a test for convergence can be daunting 

as well. Before applying a test for convergence or divergence of a series, students 

need first to recognize that they need to know whether a given series converges 

(or, in the case of series where the nth term is a function of x, the radius or interval 

of convergence). Sometimes, this recognition is trivial: A question may simply ask 

whether a series converges. Other times, a student may need to think a bit to see that 

they need to know whether a series converges. Once that’s done, he or she then needs 

to select an appropriate test and apply it. This is not a simple task by any means.

This unit attempts to summarize the process for students. First, we’ll look at 

the contexts where the convergence tests are applied. Then we’ll examine each 

test, giving a rationale for why it works, and consider some questions that address 

the conceptual sides of the tests. There are ample examples for straightforward 

testing of convergence of series in textbooks; we won’t provide many more of these. 

Consequently, this unit should be seen as a supplement rather than a replacement for 

textbook coverage of convergence tests. 

By examining the AP questions identified in the “Introduction to Infinite Series” 

at the beginning of these materials, you can see some of the ways students have been 

asked questions that require a test for convergence on past AP Exams. 
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Note that there are two broad classes of series: those with constant terms, and 

those whose terms depend on a variable. Tests for convergence can be applied to 

both.

I. 	 When do I need to test for convergence of an infinite series? 

•	 Which of the following series converge? 

•	 Which of the following series diverge? 

•	 For what values of k does a series whose nth term is a function of k 

converge?

•	 Is it possible to evaluate f (a) with arbitrary accuracy using its Taylor 

Series expansion at x = b?

•	 What is the radius or interval of convergence for a particular series? 

All of these are contexts that require you to choose and apply tests for 

convergence. In some cases, the test for convergence isn’t really much of a test at 

all. You may be expected to simply know that a certain series converges or diverges. 

Typical examples that rarely if ever require justification on the free-response section 

of the AP Exam include geometric series, harmonic and alternating harmonic series, 

and p-series. Students could simply assert: “This is the harmonic series. It diverges,” 

or “This is the alternating harmonic series. It converges.” The geometric series and 

p-series tests are almost as easy to apply. To show that 
1

n

n

e
π

∞

=

 
  

∑ converges, a student 

can simply state, “This is a geometric series with a common ratio whose absolute 

value is less than 1. It converges.” To show that 
3 2

1

2

n n

∞

=
∑ diverges, it’s sufficient to 

say “This is a p-series with p < 1. It diverges.” It would be clearer if the student said, 

“
1

n

n

e
π

∞

=

 
  

∑ converges to 

€ 

e
π − e

 because it is a geometric series with common ratio 

€ 

0 < e
π

<1” and “
3 2

1

2

n n

∞

=
∑ diverges because it is a p-series with p = 

€ 

p = 2
3

<1.” Note that 

these sorts of applications are really based on your ability to recognize that a series 

matches a particular form, and your ability to recall a fact about the convergence of 

series that have that form. There is no real procedure to follow to apply these tests.

All of the other tests share a more complicated pattern of use. First, you need 

to verify the hypotheses of the test. Then you need to assert the proper conclusion 

based on the hypotheses. How this is done varies from test to test. Here is a list of 

convergence tests needed for the AP Calculus BC Exam:
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Summary of Tests for Convergence of Infinite Series

nth Term Test or 
Divergence Test

If 
1

n
n

a
∞

=
∑  converges, then lim 0nn

a
→∞

= .

If lim 0nn
a

→∞
≠ , then 

1
n

n
a

∞

=
∑  diverges.

Geometric Series

1

1

i

i
ar

∞
−

=
∑ converges if and only if 

€ 

r <1. 

If the series converges, its sum is 
1

a
r−

.

Integral Test

If ( )f x  is continuous, positive, and decreasing for all x ≥ M > 0 , then 

1

( )
n

f n
∞

=
∑  converges if and only if ( )

M
f x dx

∞

∫ converges.

p-Series
1

1
p

n n

∞

=
∑  converges if and only if 1p > .

Comparison Test

Suppose 

€ 

0 ≤ an ≤ bn  for all 

€ 

n ≥ N .

If 
1

n
n

b
∞

=
∑  converges, then

1
n

n
a

∞

=
∑  converges.

If 
1

n
n

a
∞

=
∑  diverges, then

1
n

n
b

∞

=
∑  diverges.

Ratio Test

If 1lim 1n

n
n

a
a

+

→∞
< , then 

1
n

n
a

∞

=
∑ converges absolutely.

If 1lim 1n

n
n

a
a

+

→∞
> , then

1
n

n
a

∞

=
∑  diverges.

If 1lim 1n

n
n

a
a

+

→∞
= , then no conclusion can be made about 

1
n

n
a

∞

=
∑ .
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Alternating Series 
Test

If 0na > , decreasing, and lim 0nn
a

→∞
= , then ( ) 1

1

1
n

n
n

a
∞

−

=

−∑  and 

  
−1( )n

an
n=1

∞

∑  converge.

Absolute Conver-
gence Test

If 
1

n
n

a
∞

=
∑ converges, then 

1
n

n
a

∞

=
∑ converges.

Additional tests for convergence include the limit comparison test and the root 

test, but these are not tested on the AP Exam. Of course, students can use these tests 

on the exam, but no questions will require their application.

What Each Test Really Says 

nth Term Test or Divergence Test

Indirect reasoning may help you understand why the nth term test works. Suppose 

the limit of the nth term were a number L ≠ 0. If that were the case, then eventually 

the series would behave like a series where each term was a nonzero constant, L. 

Essentially, the tail end of the series acts like L + L + L + …, and so the sum could be 

made arbitrarily large. 

Note that having an nth term that approaches 0 is a necessary but not a sufficient 

condition for convergence. A frequent mistake is assuming that the converse of 

the statement of the nth term test is also true. For example, a student might look at 

the harmonic series 
1 1 1

1 ... ...
2 3 n

+ + + + +  and reason incorrectly that since 
1

0
n

→ as 

n → ∞ , the series 
1 1 1

1 ... ...
2 3 n

+ + + + +  must converge. You should simply know that 

the harmonic series diverges, although this fact is easily verified (see the discussion 

in the section on the integral test). Having an nth term that approaches 0 tells us 

nothing about the convergence or divergence of a series. Having an nth term that 

does not approach 0 tells us that a series definitely diverges. That’s the nth term test.
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Geometric Series

If a geometric series 
  

ar i−1

i=1

∞

∑  has first term a and common ratio r then the sum of 

the first n terms is given by 
( )1

1

na r
r

−
−

. Looking at the behavior of this sum as n→∞ 

informs us about the convergence of that geometric series. The only way 
( )1

lim
1

n

n

a r
r→∞

−
−

can exist is if |r| < 1. When
 
|r| < 1, the term rn goes to 0 as n→∞,  and the infinite 

geometric series converges to 
1

a
r−

. Note that this is the only test that tells us not only 

that a series converges but what the series converges to.

Applying this test requires two steps:

•	 Recognizing that you have a geometric series.

•	 Finding the common ratio.

Once you’ve done that, it’s a simple matter to compare the absolute value of 

the common ratio to 1, and then make a conclusion about the series based on that 

comparison. 

Integral Test

The integral test is based on left and right Riemann sums. The pictures below give 

ample justification for the test. 

Figure 1					      Figure 2
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First, you have to imagine extending the domain of the sequence f (k) that generates 

the series 

€ 

f k( )
k=1

∞

∑  to include the positive real numbers. The graph of the resulting 

function is shown in Figures 1 and 2. Notice in Figure 1 above that each left endpoint 

rectangle has base 1 and height f (k) for k = 1,2,3... . The sum of the areas of these 

rectangles is the same as the series and greater than the area under the graph of  

y = f (x)  for x from 1 to ∞. So if the integral f x dx( )
∞

∫
1

 diverges, the series, which is 

greater, must diverge as well. 

Similarly in Figure 2, a right Riemann sum is illustrated. Again, the area of 

each rectangle is a term in the series. The series sum is less than the area under the 

curve, again from 1 to ∞, plus f (1), so if the integral f x dx( )
∞

∫
1

 converges, the series 

converges. Adding the first term, f (1), doesn’t affect the convergence. 

This is the essence of the integral test. If f  is eventually continuous, decreasing 

and positive (for x ≥ M), then ( )
M

f x dx
∞

∫  and 
1

( )
n

f n
∞

=
∑ either both converge or both 

diverge. You can begin the summation of the series at n = 1 instead of at M because 

you can remove any finite number of beginning terms of a series without affecting its 

convergence or divergence.

The integral test is commonly used to show that the harmonic series 

1
1

2

1

3

1
+ + + + +... ...

n
 diverges. Notice that the function ( ) 1f x

x
= is indeed 

continuous, positive, and decreasing for x > 0. The integral test tells us that since 
1 1

1 1x
dx

x
dx N

N

N

N

∞

→∞ →∞∫ ∫=






= ( )( ) = ∞lim lim ln , the harmonic series also diverges. You’ll 

see the integral test applied in the section covering p-series. As with all tests for 

convergence, it’s important to verify the hypotheses of the integral test before blindly 

applying the test. 

Interesting Observation ‘On the Side’

You might guess that since the divergence of the harmonic series was determined 

by the divergence of the natural logarithm function as the inputs get infinitely large, 

there might be a connection between the sum of the first n terms of the harmonic 

series and ln(n). In fact, it has been shown that 1
1

2

1

3

1
+ + + +



 − ( )... ln

n
n  approaches 

a constant as n → ∞. That is, lim ... ln
n n

n
→∞

+ + + +



 − ( )





1
1

2

1

3

1
exists. The value of that 
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limit is called Euler’s constant, denoted by γ (the Greek letter gamma), and has the 

approximate value of 0.5772. It’s an open question whether γ is rational or not.

p-Series

A series of the form 
1

1
p

n n

∞

=
∑  is, by definition, a p-series. The p-series test says that 

such a series converges as long as the exponent, p, is greater than 1. This test results 

directly from applying the integral test to the series. That is, since 
1

1
p dx

x
∞

∫ converges 

if and only if p > 1, 
1

1
p

n n

∞

=
∑  converges if and only if p > 1. Note that for p > 0 and x > 0, 

 ( ) 1
pf x

x
= is indeed a continuous, positive, and decreasing function of x so the 

hypotheses of the integral test are satisfied. If p ≤ 0, the series 
1

1
p

n n

∞

=
∑  diverges by the 

nth term test. For example, if p = –2, we have 2
2

1 1

1

n n
n

n

∞ ∞

−
= =

=∑ ∑ . There’s no way that one 

converges! In fact, it fails the nth term test.

	 Applying the p-series test involves the same sort of knowledge as applying 

the test for a geometric series:

•	 Recognizing that you have a p-series.

•	 Finding the value of p.

Once you’ve done that, it’s a simple matter to compare the value of p to 1, and 

then make a conclusion about the series based on that comparison. 

One remarkable fact that becomes apparent when you think about the p-series 

test is how special the value of p = 1 is. It establishes a magical boundary between 

two wholly different classes of series. That is, since p = 0.99 in the series 

€ 

1
n0.99

n=1

∞

∑ , it 

diverges. So you can make the partial sums of 
  

€ 

1
10.99 + 1

20.99 + 1
30.99 + 1

40.99 +L… as large as 

you want. Increase p just a little, and the behavior is fantastically different. You can’t 

make partial sums of 
1

1

1

2

1

3

1

41 01 1 01 1 01 1 01. . . . ...+ + + +  as large as you want, or even any 

larger than 101, as the following discussion demonstrates. Amazing! 

Interesting Observation “On the Side”

If you look just a little closer, the ideas behind the integral test let you establish an 

upper bound for 
1

1

1

2

1

3

1

41 01 1 01 1 01 1 01. . . . ...+ + + + . (The following is not a required topic 

for the AP Exam.) Adding the first 10 terms of the series gives a sum of 2.902261. If 
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you look at Figure 2 from the discussion of the integral test, it should be clear that 

the sum of our series from the eleventh term out to infinity is less than 
1.0110

1 dx
x

∞

∫ . It’s 

straightforward to evaluate this improper integral: 

1 1
1 01

10
1 01

10

0 0

x
dx

x
dx

x
N

N

N. .

.

lim lim
∞

→∞ →∞

−

∫ ∫= =
11

10

0 01

0 01

10

0 01
97 724

−









 = <

−

. .
.

.N

. 

So the entire sum must be less than 2.903 + 97.724 = 100.627. So, while you can 

make partial sums of 
1

1

1

2

1

3

1

499 99 99 99. . . . ...+ + + +  as large as you want, the sum 

1

1

1

2

1

3

1

41 01 1 01 1 01 1 01. . . . ...+ + + +
 
is not larger than 101. Incredible.

Comparison Test

Conceptually, the comparison test is straightforward. First, it’s important to note that 

the test applies only to series with positive (or nonnegative) terms. A positive term 

series whose terms are less than those of a convergent series must also converge. And 

a positive term series whose terms are greater than the terms of a divergent series 

must also diverge. 

Note that the comparison test tells us nothing about a series whose terms are 

larger than the terms of a convergent series, and nothing about a series whose terms 

are smaller than the terms of a divergent series. In these cases, you must try another 

test, or pick another series with which to compare.

Usually, the hardest part when applying the comparison test is picking the 

series with which to compare. Often, this is some well-known series. Here’s a simple 

example:

€ 

sin2 n( )
n2

n=1

∞

∑  converges because, for all n, 

€ 

sin2 n( )
n2 ≤ 1

n2  and 
2

1

1

n n

∞

=
∑ converges 

because it is a p-series with p = 2. Similarly, 
( )

1

ln

n

n
n

∞

=
∑ diverges because, for all n < 2, 

( )ln 1n
n n

> . Notice that all we need is for the terms to eventually get larger than the 

terms of the known series, since we can remove any finite number of terms from the 

front of a series without affecting its convergence or divergence.

Ratio Test

The ratio test is frequently used to find the radius of convergence for a power 

series. Essentially, it says that if the ratio of adjacent terms in the series eventually 
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approaches a number whose absolute value is less than 1, then the series converges. 

A geometric series has a constant common ratio. Applying the ratio test checks 

whether a nonconstant ratio has a limit as n → ∞. The conditions of the two tests are 

almost the same. 

•	 A geometric series converges when |r| < 1
.

•	 A series converges absolutely by the ratio test when 1lim 1n

n
n

a
a

+

→∞
< .

•	 A geometric series diverges when |r| > 1.

•	 A series diverges by the ratio test when 1lim 1n

n
n

a
a

+

→∞
> .

The only difference between the two is the case where r = 1. A geometric series 

with r = 1 diverges. But the ratio test is inconclusive when 1lim 1n

n
n

a
a

+

→∞
= . Notice that if 

the nth term has an expression raised to the nth power (as it will in any power series), 

when you calculate 1n

n

a
a

+  the powers vanish. Moreover, when you divide a term with 

( )1 !n +  by a term with n!, the factorials vanish. So, it should come as no surprise 

that the ratio test is invariably used to find the radius of convergence of power series, 

including Taylor series.

One other important fact about the ratio test is that when 1lim 1n

n
n

a
a

+

→∞
< , we know 

more than just that 
1

n
n

a
∞

=
∑ converges. In particular, we know that 

1
n

n
a

∞

=
∑  converges. 

Alternating Series Test

The alternating series test has three parts to its hypothesis: The terms in the series 

must alternate in sign, they must decrease in absolute value, and the nth term must 

approach 0 as n approaches infinity. If all three conditions are met, the series converges. 

The justification for the alternating series test typically involves a look at how the 

sequence of partial sums, s
1
 = a

1
, s

2
 = a

1
 – a

2
, s

3
 = a

1
 – a

2
 + a

3
, ..., behaves. (Here, we’re 

assuming each of the terms a
k
 is positive.) Most texts have a graph like the following:
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Adding a
3
 to the second partial sum s

2
 results in a third partial sum that is less 

than the first, s
1
. This must be true because we subtracted more (a

2
) from s

1
 than was 

added back (a
3
). In this context, if eventually the amount a partial sum changes by 

goes to 0, the partial sums must converge. This analysis shows why the alternating 

series test requires that terms decrease to 0 in absolute value. If the terms didn’t 

decrease, then one term could bounce us past an earlier partial sum. And of course if 

the terms don’t approach 0, then the sequence of partial sums can’t converge by the 

nth term test.

Similar to the way the integral test gives rise to an upper bound for the error 

in stopping an infinite summation at the nth term (sometimes called the truncation 

error), so too does the alternating series test allow us to determine an error bound. 

This time, though, the error bound is a required topic for AP Calculus BC. If an 

alternating series 

€ 

bn
n=1

∞

∑
 

 
  

 

 
  converges with 

€ 

bn
n=1

∞

∑ = S  [note that here we’re using  

b
n
 = (–1)n+1 a

n
 where the sequence (a

n
) is positive and decreasing] and the nth 

partial sum, 

€ 

bn
n=1

N

∑ = SN , then the alternating series error bound says simply that 

the error |S – S
N
| satisfies |S – S

N
| < |b

N+1
|. That is, the truncation error is no greater 

in magnitude than the magnitude of the first omitted term. If b
N+1 

> 0, then S
N
 < S 

and if b
N+1

 < 0, then S
N
 > S. Here’s a simple application of the test and error bound. 

The alternating harmonic series, 
−( )

= − + −
+

=

∞

∑ 1
1

1

2

1

3

1

1

n

n n
... , has terms that alternate 

and decrease to 0 in absolute value. The alternating series test guarantees that the 

series converges. In fact, it converges to ln(2) ≈ 0.693. Adding the first five terms gives 

5

1 1 1 1 47
1 0.783

2 3 4 5 60
S = − + − + = = . The error bound says that the truncation error is no 

greater in magnitude than the first omitted term, 

€ 

− 1
6

= 0.16 . Indeed, S
5
 is within 0.16 

of ln(2). 

Absolute Convergence Test

Though rarely a topic on recent AP Exams, the absolute convergence test is perhaps 

the simplest test of all. It says that if 
1

n
n

a
∞

=
∑ converges, then 

1
n

n

a
∞

=
∑  converges. In other 

words, a series that converges absolutely must converge. You can also be sure that 

1 1 1
n n n

n n n

a a a
∞ ∞ ∞

= = =

− ≤ ≤∑ ∑ ∑ .
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This test can be more useful than first meets the eye. Both the integral test 

and the comparison test require terms that are nonnegative. If you’re presented with 

a series 
1

n
n

a
∞

=
∑ that does not satisfy this requirement, you could try testing whether 

1
n

n
a

∞

=
∑ converges. If it does, this test guarantees that 

1
n

n
a

∞

=
∑ converges as well. You 

might also try the alternating series test.

Interesting Observation “On the Side”

When a series converges absolutely, the order in which the terms are added 

makes no difference. The sum will be the same. The same is not true for series 

that converge but not absolutely. Once again, consider the alternating harmonic 

series. Earlier, we noted that the sum 
−( )

= − + − = ( )
+

=

∞

∑ 1
1

1

2

1

3
2

1

1

n

n n
... ln . But if we 

rearrange the terms (two positive terms and then a negative term—repeated) 

  

€ 

1+ 1
3

− 1
2

+ 1
5

+ 1
7

− 1
4

+ 1
9

+ 1
11

− 1
6

+L we’ll get a convergent series. Curiously, though, 

this series does not converge to ln(2). You can show that this series converges to 

€ 

3ln 2( )
2

 by using the series for ln(2) in 

€ 

ln 2( )+ 1
2

ln 2( ). For a series like 1
1

4

1

9

1

16
− + − + ...  

that does converge absolutely (the series of absolute values is a p-series with p = 2), it 

doesn’t matter how you rearrange the terms; the series will still converge to the same 

number.

Questions

1.	 If 
1

n
n

a
∞

=
∑ diverges, which of the following must be true?

	 I. lim 0nn
a

→∞
≠ 	 II. 

€ 

lim
n →∞

an +1

an

≠ 1
2

 	 III. If f (n)  = a
n
, then f x dx( )

∞

∫
1

 diverges.

2.	 If 
1

n
n

a
∞

=
∑ converges, which of the following is a valid conclusion?

	 I. 
1

lim
2nn

a
→∞

≠
 	

II. 1lim 2n

n
n

a
a

+

→∞
≠

	
III. 

1

0n
n

a
∞

=

=∑

3. 	 If lim 0nn
a

→∞
= , which of these must be true?

	 I. 
1

n
n

a
∞

=
∑ converges		 II. 

1
n

n
a

∞

=
∑ diverges	 III. 1lim 1n

n
n

a
a

+

→∞
<

4. 	 If a
1
 + a

2
 + a

3
 + ... converges and a

n
 > 0 for all n, then which of these must be true?

	 I. a
1
 + a

2
 – a

3
 – a

4
 + a

5
 + a

6
 – a

7
 – a

8
 + ... also converges.
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	 II. lim 0nn
a

→∞
=

	 III. 1lim 0n

n
n

a
a

+

→∞
=

5.	 If a
1
 + a

2
 + a

3
 + ... converges, which of these must be true?

	 I. a
1
 + a

2
 – a

3
 – a

4
 + a

5
 + a

6
 – a

7
 – a

8
 + ... also converges.

	 II. lim 0nn
a

→∞
=

	 III. 1lim 0n

n
n

a
a

+

→∞
=

6. 	 How many terms of the series 
−( )

= − + −
+

=

∞

∑ 1
1

1

2

1

3

1

1

n

n n
...  must be added before the 

alternating series error bound would guarantee that the sum is within 0.001 of 

ln(2)? 

Answers

1.	 Option I need not be true because a series can diverge even when its nth term 

goes to 0. For example, 

€ 

1
n

n=1

∞

∑  diverges but 

€ 

lim
n →∞

1
n

= 0.

	 Option II must be true, because if 

€ 

lim
n →∞

an +1

an

= 1
2

, then 
1

n
n

a
∞

=
∑ would converge by the 

ratio test.

	 Option III need not be true because we don’t know if f(x) is continuous, positive, 

and decreasing. If f(x) = a
n
 for n ≤ x < n + 1 and n = 1, 2 ,3 ,... then f x dx an

n

( ) =
∞

=

∞

∫ ∑
1 1

 

diverges. However, if f (x)  = 0 when x is not a positive integer, then f x dx( ) =
∞

∫
1

0  

converges.

2.	 Option I must be true because for a convergent series, lim 0nn
a

→∞
=  by the nth term 

test.

	 Option II must be true because if 1lim 2n

n
n

a
a

+

→∞
= , then 

€ 

lim
n →∞

an +1

an

= 2 , and the series 

must diverge by the ratio test. 

	 Option III need not be true, as 

€ 

1
2

 
 
 

 
 
 

n

n=1

∞

∑ =1≠ 0  illustrates. The series could converge 

to any number. 

08-1455.AP.SF.Calculus 0910.indd   60 9/10/08   10:22:17 AM



Overview of Tests for Convergence of Infinite Series 

 61

	 Notice the difference between Options I and III.

3.	 None must be true. Having an nth term that goes to zero tells us nothing about 

the convergence of a series. Counterexamples to I, II, and III, respectively, are 

€ 

1
n

n=1

∞

∑ ,  1
n2

n=1

∞

∑ ,  and 1
n

n=1

∞

∑ .

4.	 Option I must be true. Since the series in I converges absolutely, it converges.

	 Option II must be true. When a series converges, its nth term must go to 0 by the 

nth term test.

	 Option 3 need not be true. All we know is that if 1lim n
n

n

a
a

+

→∞
exists, then 

10 lim 1n
n

n

a
a

+

→∞
≤ ≤ .

5.	 Notice the difference between this question and the previous one. Here we are not 

told that a
n
 > 0 for all n, so we don’t know if the given series converges absolutely. 

The terms could really alternate in sign. The only option that must be true is 

Option II.

6.	 By the alternating series error bound, adding 999 terms guarantees the 

error is less than the absolute value of the thousandth term, or 0.001. In fact, 

€ 

−1( )n +1

n
n=1

999

∑ = 0.6936  is within 0.001 of ln(2) ≈ 0.6931.

Java Applets for Series

http://www.slu.edu/classes/maymk/SeriesGraphs/SeriesGraphs.html

http://www.slu.edu/classes/maymk/SeqSeries/SeqSeries.html

http://www.scottsarra.org/applets/calculus/SeriesGrapherApplet.html 

(This one offers a nice way to increase the degree and graph Taylor polynomial 

approximations.)
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Instructional Unit: Manipulation of  
Power Series
Jim Hartman 
The College of Wooster 
Wooster, Ohio

Overview

Focus: The different ways a power series can be manipulated.

Audience: AP Calculus BC students.

Background Information Required: Prior to this unit students should have been 

exposed to Maclaurin series for ex, cos(x), sin(x), and 

€ 

1
1− x

. In addition, they should 

know about the Taylor series, 

€ 

f n( ) a( )
n!

x − a( )n

n= 0

∞

∑ , for a function f about x = a, along 

with knowledge about radius and interval of convergence.

Unit Summary: This two- to four-day unit will summarize and review the ways of 

manipulating known power series. It will look at the four different ways existing series 

can be manipulated:

(i)	 using a substitution

(ii)	 using algebra

(iii)	using differentiation

(iv)	using integration

The first section will examine the use of substitution and algebra to manipulate 

series and will have a worksheet that can be given directly to students. The second 

section will concentrate on differentiation and integration, and will also have a 

worksheet. At the end of the second section, students will be expected to use a 

combination of these four different ways of manipulating a series. Students should not 
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only be able to give a specified number of terms in the manipulated series, but should 

also be able to give the general term. In all of the work, we will pay attention to the 

domain on which our statements are true. Before the beginning of the unit, students 

should be reminded of the Maclaurin series they have already seen: 

(a)	
  

€ 

ex = xn

n!
n= 0

∞

∑ =1+ x + x 2

2!
+ x 3

3!
+L			   for all values of x

(b)	
  

€ 

cos x( )=
−1( )n x 2n

2n( )!
n= 0

∞

∑ =1− x 2

2!
+ x 4

4!
− x 6

6!
+L	 for all values of x

(c)	
  

€ 

sin x( )=
−1( )n x 2n +1

2n +1( )!
n= 0

∞

∑ = x − x 3

3!
+ x 5

5!
− x 7

7!
+L	 for all values of x

(d)	
  

€ 

1
1− x

= xn

n= 0

∞

∑ =1+ x + x 2 + x 3 +L 		  for –1 < x < 1

Section 1: Series Manipulation Using Substitution  
and Algebra

The easiest way to show these manipulations is to give examples. I recommend 

starting with the following examples for substitution.

Example 1

  

€ 

1
1+ x

= 1
1− −x( )

= −x( )n

n= 0

∞

∑ = −1( )n xn

n= 0

∞

∑ =1+ −x( )+ −x( )2 + −x( )3 +L =1− x + x 2 − x 3 +L 

for –1 < –x < 1 because we are replacing x in the geometric series with –x. These 

inequalities are equivalent to –1 < x < 1. Note that the first four terms for the new 

series are given by the last expression, whereas the general term can be described 

using either of the two summands in the two expressions using summation notation.

Example 2

  

€ 

1
1+ x 2 = 1

1− −x 2( )= −x 2( )n

n= 0

∞

∑ = −1( )n x 2n

n= 0

∞

∑ =1+ −x 2( )+ −x 2( )2
+ −x 2( )3

+L =1− x 2 + x 4 − x 6 +L 

is valid for –1 < –x2 < 1 because we are replacing x in the geometric series with –x2.  

The interval on which these equations hold is equivalent to –1 < x < 1 because we 

must have x2 < 1. Again, the first four terms and general term are given in the same 

way as in Example 1.

L

L

L

L

L

L

L

L
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Example 3

  

€ 

1
x

= 1
1− 1− x( )

= 1− x( )n

n= 0

∞

∑ = −1( )n x −1( )n

n= 0

∞

∑
=1+ 1− x( )+ 1− x( )2 + 1− x( )3 +L =1− x −1( )+ x −1( )2 − x −1( )3 +L

  

holds for –1 < 1 – x < 1 or, equivalently, for 0 < x < 2. Notice that this gives the Taylor 

series for the function given by 

€ 

f x( )= 1
x

 centered at a = 1 (i.e., the point (1, 1)).

Example 4

cos
!

π
π

2

1
2

2

1
2

0

−



 =

−( ) −( )
( )

=
−( ) −

=

∞

∑x
x

n

xn
n

n

n ππ

π π π

2
2

1 2
2

2
4

2

0

2 4

( )
( )

= −
−( )

+
−( )

−
−

=

∞

∑

n

n n

x x x

!

! !
22

6

6( )
+

!
...

 

cos
!

π
π

2

1
2

2

1
2

0

−



 =

−( ) −( )
( )

=
−( ) −

=

∞

∑x
x

n

xn
n

n

n ππ

π π π

2
2

1 2
2

2
4

2

0

2 4

( )
( )

= −
−( )

+
−( )

−
−

=

∞

∑

n

n n

x x x

!

! !
22

6

6( )
+

!
...

is true for all values of 

€ 

x − π
2

 
 
 

 
 
  and thus for all values of x. We note that this gives us 

the Taylor series for sin(x)  centered at 

€ 

a = π
2

 or at the point 

€ 

π
2

,1
 
 
 

 
 
 .

Example 5

  

€ 

e−x 2

=
−x 2( )n

n!
n= 0

∞

∑ =
−1( )n x 2n

n!
n= 0

∞

∑

=1+ −x 2( )+
−x 2( )2

2!
+

−x 2( )3

3!
+L =1− x 2 + x 4

2!
− x 6

3!
+L

   

€ 

e−x 2

=
−x 2( )n

n!
n= 0

∞

∑ =
−1( )n x 2n

n!
n= 0

∞

∑

=1+ −x 2( )+
−x 2( )2

2!
+

−x 2( )3

3!
+L =1− x 2 + x 4

2!
− x 6

3!
+L

for all values of x.

We now switch to some examples of manipulation of a series using algebra.

Example 1

  

€ 

x
1− x

= x ⋅ 1
1− x

= x ⋅ xn

n= 0

∞

∑ = xn +1

n= 0

∞

∑ = x + x 2 + x 3 + x 4 +L holds for –1 < x < 1 because 

we are multiplying the geometric series by x, and the geometric series converges for 

–1 < x < 1. 

LL

L L

L
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Example 2

 

1+ x
1− x2 = 1+ x( )⋅

1
1− x2 = 1+ x( )⋅ x2( )n

n=0

∞

∑ = 1+ x( )⋅ x2n

n=0

∞

∑ = x2n + x2n+1( )
n=0

∞

∑
= 1+ x( )+ x2 + x3( )+ x4 + x5( )+ x6 + x7( )+L = 1+ x + x2 + x3 + x4 +L

 again 

is valid for –1 < x2 < 1 or equivalently –1< x < 1 because we are replacing x in the 

geometric series with x2. Note that this was a rather silly way to proceed since we 

could have simplified the algebraic expression first to get 

€ 

1+ x
1− x 2 = 1+ x

1− x( ) 1+ x( )
= 1

1− x
 

for x ≠ –1.

Example 3

  

€ 

x
3+ x

= x
3

 
 
 

 
 
 ⋅

1

1− −x
3

 
 
 

 
 
 

= x
3

 
 
 

 
 
 ⋅

−x
3

 
 
 

 
 
 

n

n= 0

∞

∑ = −1( )n xn +1

3n +1

n= 0

∞

∑ = x
3

− x 2

32 + x 3

33 − x 4

34 +L… is true 

for 

€ 

−1< −x
3

<1, or equivalently for –3 < x < 3, since we replaced x with 

€ 

−x
3

 in the 

geometric series. 

Example 4

Using the Maclaurin series for sin(x) find 

€ 

lim
x →0

sin x( )− x
x 3

 

 
 

 

 
 .

	   

€ 

sin x( )− x = x − x 3

3!
+ x 5

5!
− x 7

7!
+L

 

 
 

 

 
 − x = − x 3

3!
+ x 5

5!
− x 7

7!
+L… so 

  

€ 

sin x( )− x
x 3 = 1

x 3

 
 
 

 
 
 ⋅ − x 3

3!
+ x 5

5!
− x 7

7!
+L

 

 
 

 

 
 = − 1

3!
+ x 2

5!
− x 4

7!
+L…. Thus, 

	
  

€ 

lim
x →0

sin x( )− x
x 3

 

 
 

 

 
 = lim

x →0
− 1

3!
+ x 2

5!
− x 4

7!
+L

 

 
 

 

 
 = − 1

6
. This last equality comes from 

the fact that a power series is continuous on the interior of its interval of 

convergence. Since the series is convergent for all values of x, we can simply 

use x = 0 in the series after we’ve finished with the algebraic manipulation 

to compute the limit.

Example 5

Find the Maclaurin series for 

€ 

1
1+ x

+ 1
1− x

.

L L

L

L

L
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€ 

1
1+ x

+ 1
1− x

= −1( )n xn +
n= 0

∞

∑ xn

n= 0

∞

∑
= 1− x + x 2 − x 3 +L( )+ 1+ x + x 2 + x 3 +L( )
= 2 + 2x 2 + 2x 4 + 2x 6 +L

= 2
1− x 2

 
 
 

 
 
 

Note that the last parenthetical line is derived from the sum of a geometric series and 

is included because if we had initially simplified the sum of the two fractions, the 

result would be the last expression. Note that these equations are valid for –1 < x < 1  

because the Maclaurin series for both of the summands have this interval as their 

interval of convergence. In general, this type of algebraic work will be valid on the 

intersection of the two intervals of convergence.

Exercise Set A Questions

1.	 (a)	 Find the first four nonzero terms and the general term of the Maclaurin series 

for sin(x 2)  and give its interval of convergence.

	 (b)	 Use the series in part (a) to find the first four nonzero terms and general term of 

the Maclaurin series for x sin(x 2).

2.	 Find the first four terms and general term of the Maclaurin series for 

€ 

x 2

2 − x 2  and 

give its interval of convergence.

L

L

L
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3.	 (2007 BC, 6b) Use the Maclaurin series for e–x2 to find 

€ 

lim
x →0

1− x 2 − e−x 2

x 4

 

 
 

 

 
 .

4.	 Define the function f by 

€ 

f x( )=

sin x( )
x

if x ≠ 0

1 if x = 0

 

 
 

 
 

. 

	 (a)	� Find the first four nonzero terms and the general term of the Maclaurin series 

for f.

	 (b)	 Use part (a) to determine f (n)(0).

	 (c)	 Indicate why f has a local maximum at x = 0.

5.	 Use the fact that 

€ 

cos x( )= sin π
2

− x
 
 
 

 
 
  to find the first four nonzero terms and general 

term of the Taylor series for cos(x) at 

€ 

a = π
2

.

6.	 (2001 BC, 6b) A function f is defined by 
  

€ 

f x( )= 1
3

+ 2x
32 + 3x 2

33 +L+
n +1( )xn

3n +1 +L. 

Find	

€ 

lim
x →0

f x( )− 1
3

x

 

 

 
 
 

 

 

 
 
 

 

€ 

lim
x →0

f x( )− 1
3

x

 

 

 
 
 

 

 

 
 
 
.

7.	 (1998 BC, 3b) The function f has derivatives of all orders for all real numbers with 

f (0) = 5, 

… …
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	 f´ (0) = –3, f ˝ (0) = 1, and f ˝´ (0) = 4. If g(x) = f(x2), find the fourth-degree Taylor 

polynomial for g about a = 0.

8.	 (a)	� (1996 BC, 2c) The Maclaurin series for the function f(x) is 

  

€ 

1+ x
2!

+ x 2

3!
+ x 3

4!
+L+ xn

n +1( )!
+L. Find the first three nonzero terms and the 

general term of the Maclaurin series for g(x)= xf(x).

	 (b)	 Give a formula for g(x) that does not involve an infinite series.

9.	 (1993 BC, 5b) Let f be the function given by 

€ 

f x( )= e
x
2 . Write the first three nonzero 

terms and the general terms for the series about x = 0 for the function given by 

€ 

g 0( )= 1
2

 and 

€ 

g x( )= e
x
2 −1
x

 for x ≠ 0.

10.	Find the first four terms and general term of the Taylor series for 

€ 

x
2 − x

 centered  

at a = 1 and give its interval of convergence. Note that 2 – x = 1 – (x – 1) and  

x = (x – 1) + 1.

… …
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Exercise Set A Solutions

1.	 (a)	 Find the first four nonzero terms and the general term of the Maclaurin series 

for 

€ 

sin x 2( ) and give its interval of convergence.

	 (b)	 Use the series in part (a) to find the first four nonzero terms and general term of 

the Maclaurin series for 

€ 

x sin x 2( ).

	 (a)	
  

€ 

sin x( )= x − x 3

3!
+ x 5

5!
− x 7

7!
+L+

−1( )n x 2n +1

2n +1( )!
+L so

		   

  

€ 

sin x 2( )= x 2 −
x 2( )3

3!
+

x 2( )5

5!
−

x 2( )7

7!
+L+

−1( )n x 2( )2n +1

2n +1( )!
+L

= x 2 − x 6

3!
+ x10

5!
− x14

7!
+L+

−1( )n x 4n +2

2n +1( )!
+L

	 The interval of convergence is all real numbers.

	 (b)	
  

€ 

x sin x 2( )= x 3 − x 7

3!
+ x11

5!
− x15

7!
+L+

−1( )n x 4n +3

2n +1( )!
+L

2.	 Find the first four terms and general term of the Maclaurin series for 

€ 

x 2

2 − x 2  and 

give its interval of convergence.

	

  

€ 

x 2

2 − x 2 = x 2

2
⋅ 1

1− x 2

2

= x 2

2
⋅ 1+ x 2

2
+ x 2

2
 

 
 

 

 
 

2

+ x 2

2
 

 
 

 

 
 

3

+L+ x 2

2
 

 
 

 

 
 

n

+L
 

 
  

 

 
  

= x 2

2
+ x 4

22 + x 6

23 + x 8

24 +L+ x 2n +2

2n +1 +L

	 The series converges when 

€ 

−1< x 2

2
<1 or equivalently when 

€ 

x 2 < 2  and thus when 

€ 

− 2 < x < 2 .

3.	 (2007 BC, 6b) Use the Maclaurin series for 

€ 

e−x 2

 to find 

€ 

lim
x →0

1− x 2 − e−x 2

x 4

 

 
 

 

 
 .

	
  

€ 

e−x 2

=1+ −x 2( )+
−x 2( )2

2!
+

−x 2( )3

3!
+L =1− x 2 + x 4

2
− x 6

6
+L so

	
  

€ 

1− x 2 − e−x 2

= − x 4

2
+ x 6

6
−L giving 

  

€ 

1− x 2 − e−x 2

x 4 = − 1
2

+ x 2

6
−L. Therefore 

€ 

lim
x →0

1− x 2 − e−x 2

x 4

 

 
 

 

 
 = − 1

2
.

… …

…

…

… …

……

… …

…

… …

…

…
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4.	 Define the function f by f (x)=

€ 

f x( )=

sin x( )
x

if x ≠ 0

1 if x = 0

 

 
 

 
 

. Find the first four nonzero terms

 

and the general term of the Maclaurin series for f and use them to determine f ( n)(0)

along with indicating why f has a local maximum at x = 0.

	 (a)	
  

€ 

sin x( )= x − x 3

3!
+ x 5

5!
− x 7

7!
+L+

−1( )n x 2n +1

2n +1( )!
+L so 

		
  

€ 

f x( )=1− x 2

3!
+ x 4

5!
− x 6

7!
+L+

−1( )n x 2n

2n +1( )!
+L .

	 (b)	 Thus 

€ 

f n( ) 0( )=
0 if n is odd

−1( )n
2

n +1
if n is even

 

 
  

 
 
 

 for 

€ 

n > 0 . 

	 (c)	 Since 

€ 

′ f 0( )= 0  and 

€ 

′ ′ f 0( )= − 1
3

, there is a local maximum at 

€ 

x = 0  by the 

second derivative test for local extrema.

5.	 Use the fact that cos(x) = sin 

€ 

cos x( )= sin π
2

− x
 
 
 

 
 
  to find the first four nonzero terms and 

general term of the Taylor series for 

€ 

cos x( ) at 

€ 

a = π
2

.

	

  

€ 

cos x( )= sin π
2

− x
 
 
 

 
 
 = −sin x − π

2
 
 
 

 
 
 

= − x − π
2

 
 
 

 
 
 −

x − π
2

 
 
 

 
 
 

3

3!
+

x − π
2

 
 
 

 
 
 

5

5!
−

x − π
2

 
 
 

 
 
 

7

7!
+L+

−1( )n x − π
2

 
 
 

 
 
 

2n +1

2n +1( )!
+L

 

 

 
 
 
 

 

 

 
 
 
 

= − x − π
2

 
 
 

 
 
 +

x − π
2

 
 
 

 
 
 

3

3!
−

x − π
2

 
 
 

 
 
 

5

5!
+

x − π
2

 
 
 

 
 
 

7

7!
+L+

−1( )n +1 x − π
2

 
 
 

 
 
 

2n +1

2n +1( )!
+L

6.	 (2001 BC, 6b) A function f is defined by f (x)=  
  

€ 

f x( )= 1
3

+ 2x
32 + 3x 2

33 +L+
n +1( )xn

3n +1 +L. 

…

… …

… …

…

……

… …
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	 Find

 

€ 

lim
x →0

f x( )− 1
3

x

 

 

 
 
 

 

 

 
 
 
.

	
  

€ 

f x( )− 1
3

x
= 2

32 + 3x
33 +L+

n +1( )xn−1

3n +1 +L  so 

€ 

lim
x →0

f x( )− 1
3

x

 

 

 
 
 

 

 

 
 
 

= 2
9

.

7.	 (1998 BC, 3b) The function 

€ 

f  has derivatives of all orders for all real numbers with 

€ 

f 0( )= 5, 

€ 

′ f 0( )= −3, 

€ 

′ ′ f 0( )=1, and 

€ 

′ ′ ′ f 0( )= 4 . If 

€ 

g x( )= f x 2( ) find the fourth-degree 

Taylor polynomial for 

€ 

g  about 

€ 

a = 0.

	 The second-degree Taylor polynomial for 

€ 

f  about 

€ 

a = 0 is given by 

	

€ 

T x( )= f 0( )+ ′ f 0( )x +
′ ′ f 0( )
2

x 2 = 5 − 3x + 1
2

x 2 . Thus the fourth-degree Taylor 

polynomial for 

€ 

g x( )= f x 2( ) about 

€ 

a = 0 is given by 

€ 

S x( )= T x 2( )= 5 − 3x 2 + 1
2

x 4 .

8.	 (a)	� (1996 BC, 2c) The Maclaurin series for the function 

€ 

f x( ) is  

  

€ 

1+ x
2!

+ x 2

3!
+ x 3

4!
+L+ xn

n +1( )!
+L. Find the first three nonzero terms and the 

general term of the Maclaurin series for 

€ 

g x( )= xf x( ).

	 (b)	 Give a formula for 

€ 

g x( ) that does not involve an infinite series.

		�  Since 
  

€ 

g x( )= xf x( )= x + x 2

2!
+ x 3

3!
+ x 4

4!
+L+ xn +1

n +1( )!
+L we have that 

€ 

g x( )= ex −1.

9.	 (1993 BC, 5b) Let 

€ 

f  be the function given by 

€ 

f x( )= e
x
2 . Write the first three 

nonzero terms and the general terms for the series about 

€ 

x = 0  for the function 

given by 

€ 

g 0( )= 1
2

 and 

€ 

g x( )= e
x
2 −1
x

 for 

€ 

x ≠ 0 .

	
  

€ 

ex =1+ x + x 2

2!
+ x 3

3!
+L+ xn

n!
+L so 

	
  

€ 

e
x
2 =1+ x

2
+

x
2

 
 
 

 
 
 

2

2!
+

x
2

 
 
 

 
 
 

3

3!
+L+

x
2

 
 
 

 
 
 

n

n!
+L =1+ x

2
+ x 2

22 ⋅ 2!
+ x 3

23 ⋅ 3!
+L+ xn

2n ⋅ n!
+L, 

which leads to

	   

€ 

e
x
2 −1
x

= 1
2

+ x
22 ⋅ 2!

+ x 2

23 ⋅ 3!
+L+ xn−1

2n ⋅ n!
+L.

…

… …

……

…

… …

… … … …

… …
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10.	Find the first four terms and general term of the Taylor series for 

€ 

x
2 − x

 centered 

at 

€ 

a =1 and give its interval of convergence. Note that 

€ 

2 − x =1− x −1( ) and 

€ 

x = x −1( )+1.

	

  

€ 

x
2 − x

= x −1( )+1( )⋅ 1
1− x −1( )

= x −1( )+1( )⋅ 1+ x −1( )+ x −1( )2 + x −1( )3 +L+ x −1( )n +L( )
= x −1( )+ x −1( )2 + x −1( )3 + x −1( )4 +L+ x −1( )n +1 +L( )+

1+ x −1( )+ x −1( )2 + x −1( )3 +L+ x −1( )n +L( )
=1+ 2 x −1( )+ 2 x −1( )2 + 2 x −1( )3 + 2 x −1( )4 +L+ 2 x −1( )n +L

	 The geometric series here converges for 

€ 

−1< x −1<1 which is equivalent to 

€ 

0 < x < 2.

Section 2: Series Manipulation Using Differentiation  
and Integration

Theoretical Background

Let 

€ 

f x( )= an x − a( )n

n= 0

∞

∑  be a power series with radius of convergence R. We then 

know that the function 

€ 

f  is defined on the interval 

€ 

a − R,a + R( ) and may (or may not) 

be defined when 

€ 

x = a − R  or 

€ 

x = a + R.

Under the conditions above we have the following two theorems:

(1)	 f is differentiable on 

€ 

a − R,a + R( ) and 

€ 

′ f x( )= nan x − a( )n−1

n= 0

∞

∑
(2)	 For c and d in 

€ 

a − R,a + R( ) we have f x dx a x a dx
c

d

n
n

c

d

n

( ) = −( )∫ ∫∑
=

∞

0

.

Even if the series for f (x)  converges at x = 

€ 

a − R,a + R( ) or x = 

€ 

a − R,a + R( ), the series for f´ may 

not. We don’t prove these theorems in AP Calculus BC, but we allow students to use 

them. Likewise, considering f t dt
a

x

( )∫ , where x is in (

€ 

a − R,a + R( ) or x = 

€ 

a − R,a + R( )), implies that 

… …

……

……

……
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€ 

g x( )= an

n +1
x − a( )n +1

n= 0

∞

∑ = an−1

n
x − a( )n

n=1

∞

∑  is the antiderivative of f on 

€ 

a − R,a + R( )  

with g(a) +0. The simplest way to talk about these theorems is to indicate to the 

students that they know that the derivative of a sum is the sum of the derivatives, 

and that this now extends to infinite sums, at least on the interior of their intervals of 

convergence. The same kind of thing can be said about integrals.

Again, the easiest way to show these manipulations is to give examples. I 

recommend starting with the following examples.

Example 1

 
ln 1+ x( )=

1
1− −t( )dt

0

x

∫ = −t( )n dt
0

x

∫
n=0

∞

∑ = −1( )n t ndt
0

x

∫
n=0

∞

∑ = x −
x2

2
+

x3

3
−

x4

4
+L + −1( )n−1 xn

n
+L…

for –1 < –x < 1, , or equivalently for  –1 < x < 1. The theorem says nothing 

about convergence at the endpoints of this interval. The alternating series test 

shows that the series above converges at x = 1, but when x = –1 we get the 

negative of the harmonic series, which diverges. Even then it’s not clear what 

the series converges to when x = 1. By using the Lagrange error formula with 

x = 1, it can be shown that 
  

€ 

ln 2( )=1− 1
2

+ 1
3

− 1
4

+L+
−1( )n−1

n
+L . Therefore, 

  

€ 

ln 1+ x( )= x − x 2

2
+ x 3

3
− x 4

4
+L+ −1( )n−1 xn

n
+L  for  –1 < x ≤ 1.

Example 2

Using indefinite integration: 

  

€ 

arctan x( )= 1
1− −x 2( )dx∫ = −1( )n x 2ndx∫

n= 0

∞

∑ = c + x − x 3

3
+ x 5

5
− x 7

7
+L+ −1( )n x 2n +1

2n +1
+L 

for –1 < x < 1. If x = 0, we get c = 0 so that 

  

€ 

arctan x( )= x − x 3

3
+ x 5

5
− x 7

7
+L+ −1( )n x 2n +1

2n +1
+L. Again, the theorem says nothing 

about convergence at the endpoints, but it can also be shown that this holds for  

–1 ≤ x ≤ 1. I don’t know that I would try to show this here, but in case a student asks, 

consider:

…

……

…

… …

… …

…
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€ 

1
1+ t 2 =1− t 2 + t 4 − t 6 +L+ −1( )n t 2n +

−1( )n +1t 2n +2

1+ t 2 , which comes from the partial sum of 

a geometric series. Therefore,

 

Considering −( )
+

≤ =
+

+
+

+∫ ∫1
1

1

2 3
1

2 2

2
0

1
2 2

0

1
n

n
nt

t
dt t dt

n
 we get 

  

€ 

arctan(1) = lim
n →∞

1− 1
3

+ 1
5

− 1
7

+L+ −1( )n 1
2n +1

 
 
 

 
 
 + lim

n →∞
−1( )n +1 t 2n +2

1+ t 2 dt
0

1

∫
 

 
  

 

 
  =1− 1

3
+ 1

5
− 1

7
+L.

Example 3

  

€ 

1
1− x

=1+ x + x 2 + x 3 +L for 

€ 

−1< x <1 so 
  

€ 

1
1− x

 
 
 

 
 
 

2

= d
dx

1
1− x

 
 
 

 
 
 =1+ 2x + 3x 2 + 4x 3 +L 

for 

€ 

−1< x <1. If we continue this process, we get 

  

€ 

2 1
1− x

 
 
 

 
 
 

3

= d
dx

1
1− x

 
 
 

 
 
 

2 

 
  

 

 
  = 2 + 6x +12x 2 + 20x 3 +L+ n + 2( ) n +1( )xn +L or 

  

€ 

1
1− x

 
 
 

 
 
 

3

=1+ 3x + 6x 2 +10x 3 +L+
n + 2( ) n +1( )

2
xn +L for 

€ 

−1< x <1. One could 

continue this to get

  

€ 

3 1
1− x

 
 
 

 
 
 

4

= 3+12x + 30x 2 + 60x 3 +L+
n + 3( ) n + 2( ) n +1( )

2
xn +L and so 

  

€ 

1
1− x

 
 
 

 
 
 

4

=1+ 4x +10x 2 + 20x 3 +L+
n + 3( ) n + 2( ) n +1( )

3 ⋅ 2
xn +L. 

Continuing this further yields

… …

……

… …

… …

… …

… …

…

 64 

nothing about convergence at the endpoints, but it can also be shown that this holds for 1 x 1. I don’t 
know that I would try to show this here, but in case a student asks, consider: 

1
1 t 2 1 t 2 t 4 t 6 1 n t 2n 1 n 1t 2n 2

1 t 2 , which comes from the partial sum of a geometric series. 

Therefore, 

 

1

2
0
1 1 1 1 1 1 2 2

12 4 6 2
2

0 0 0 0 0 0
1 2 2

1
2

0

1arctan(1)
1

1 1 1
1

1 1 1 11 1 1
3 5 7 2 1 1

n
n nn

n
n n

dt
t

tdt t dt t dt t dt t dt dt
t

t dt
n t

 

Considering 1 n 1 t 2n 2

1 t 2 dt
0

1

t 2n 2dt
0

1 1
2n 3

 we get  

arctan(1) lim
n

1 1
3

1
5

1
7

1 n 1
2n 1

lim
n

1 n 1 t 2n 2

1 t 2 dt
0

1

1 1
3

1
5

1
7

. 

 
 
Example 3 

1
1 x

1 x x 2 x 3  for 1 x 1 so 1
1 x

2 d
dx

1
1 x

1 2x 3x 2 4x 3  for 1 x 1. If 

we continue this process, we get 2 1
1 x

3 d
dx

1
1 x

2

2 6x 12x 2 20x 3 n 2 n 1 xn  

or 1
1 x

3

1 3x 6x 2 10x 3 n 2 n 1
2

xn  for 1 x 1. One could continue this to get 

 

3 1
1 x

4

3 12x 30x 2 60x 3 n 3 n 2 n 1
2

xn  and so 

1
1 x

4

1 4x 10x 2 20x 3 n 3 n 2 n 1
3 2

xn . Continuing this further yields 

1
1 x

k

1 kx
k 1
k 1

x 2 k 2
k 1

x 3 k n 1
k 1

xn

1 kx
k 1

2
x 2 k 2

3
x 3 n k 1

n
xn

 which yields the binomial series when x  is 

replaced with x . 
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€ 

1
1− x

 
 
 

 
 
 

k

=1+ kx +
k +1
k −1

 

 
 

 

 
 x 2 +

k + 2
k −1

 

 
 

 

 
 x 3 +L+

k + n −1
k −1

 

 
 

 

 
 xn +L

=1+ kx +
k +1

2
 

 
 

 

 
 x 2 +

k + 2
3

 

 
 

 

 
 x 3 +L+

n + k −1
n

 

 
 

 

 
 xn +L

 which yields the 

binomial series when x is replaced with –x.

Example 4

  

€ 

x
x 2 + 3x + 2

= −1
x +1

+ 2
x + 2

= −1( ) 1
1− −x( )

+ 1

1− − x
2

 
 
 

 
 
 

= −1( ) 1− x + x 2 − x 3 +L −1( )n xn +L( )+ 1− x
2

+ x 2

4
− x 3

8
+L+ −1( )n xn

2n +L
 

 
 

 

 
 

= 1
2

x − 3
4

x 2 + 7
8

x 3 +L+ −1( )n +1 1− 1
2n

 
 
 

 
 
 xn +L

 

These equations are valid for –1 < x < 1 because the first infinite series is valid 

for those values of x and the second infinite series is valid for –2 < x < 2.

Example 5

Show that 
  

€ 

y = f x( )=
−1( )n x 2n

2n +1( )!
n= 0

∞

∑ =1− x 2

3!
+ x 4

5!
− x 6

7!
+L is a solution to the differential 

equation xy´ + y = cos(x).

 
′y = ′f x( )=

−1( )n 2nx2n−1

2n + 1( )!n=0

∞

∑ = −2 x1

3!
+ 4 x3

5!
− 6 x5

7!
+L … so

€ 

x ′ y + y =
−1( )n 2nx 2n

2n +1( )!
n= 0

∞

∑ +
−1( )n x 2n

2n +1( )!
n= 0

∞

∑ =
−1( )n 2n +1( )x 2n

2n +1( )!
n= 0

∞

∑ =
−1( )n x 2n

2n( )!
= cos x( )

n= 0

∞

∑ .

Example 6

If 
  

€ 

f x( )=1+ x
2!

+ x 2

3!
+ x 3

4!
+L+ xn

n +1( )!
+L give the Maclaurin series for g(x) = xf(x) 

and express g(x) in terms of a known function rather than an infinite series.

…

… ……

… …

…

……

…

… …
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€ 

xf x( )= x + x 2

2!
+ x 3

3!
+ x 4

4!
+L+ xn +1

n +1( )!
+L = ex −1. Thus we note that 

€ 

f x( )=

ex −1
x

if x ≠ 0

1 if x = 0

 

 
 

 
 

.

Example 7

If 
  

€ 

f x( )= − x
2

+ 2
3

x 2 − 3
4

x 3 +L+ −1( )n n
n +1

xn +L then 

  

€ 

f x( )
x

= − 1
2

+ 2
3

x1 − 3
4

x 2 +L+ −1( )n n
n +1

xn−1 +L implying 

€ 

f x( )
x

= ′ g x( ) where

  

€ 

g x( )= − 1
2

x + 1
3

x 2 − 1
4

x 3 +L+ −1( )n 1
n +1

xn +L.  

Now 
  

€ 

x ⋅ g x( )= − x 2

2
+ x 3

3
− x 4

4
+L+ −1( )n xn +1

n +1
+L = ln 1+ x( )− x .  

Thus 

€ 

g x( )=
ln 1+ x( )− x

x
=

ln 1+ x( )
x

−1 for 

€ 

x ≠ 0 . From this we get 

€ 

f x( )
x

= ′ g x( )=
x ⋅ 1

1+ x
− ln 1+ x( )⋅1

x 2 = 1
x 1+ x( )

−
ln 1+ x( )

x 2 .  

Finally, 

€ 

f x( )= 1
1+ x( )

−
ln 1+ x( )

x
 for 

€ 

x ≠ 0  and 

€ 

f 0( )= 0 from the original series. Note 

that this implies 

€ 

0 = lim
x →0

f x( )= lim
x →0

1
1+ x( )

−
ln 1+ x( )

x

 

 
 

 

 
 =1− lim

x →0

ln 1+ x( )
x

 or equivalently 

€ 

lim
x →0

ln 1+ x( )
x

=1.

Example 8

Use the series for 

€ 

f x( )=

sin x( )
x

if x ≠ 0

1 if x = 0

 

 
 

 
 

 to approximate 
sin x

x
dx

( )
∫
0

2

.

We note that the integral given is actually an improper integral since the 

integrand is undefined at x = 0. However, the integrand has a removable discontinuity 

there and removing the discontinuity yields f (x). So 

f x dx dx
x

dx
x

dx
x

dx( ) = − + −∫ ∫ ∫ ∫
0

2

0

2 2

0

2 4

0

2 6

1
3 5 7! ! !00

2 2

0

2

3

1

2 1

2
2

3 3

∫ ∫+ +
−( )

+( )
+

= −
⋅

+

...
!

...

!

n nx

n
dx

22

5 5

2

7 7

1 2

2 1 2 1

5 7 2 1

⋅
−

⋅
+ +

−( )
+( ) ⋅ +( )

+

! !
...

!

n n

n n
++ ...

… …

…

… …

……

… …

…
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We note that this is an alternating series satisfying the conditions of the  

alternating series remainder theorem since 

€ 

22n +1

2n +1( )⋅ 2n +1( )!
> 2

2n + 3
⋅ 2
2n + 3

⋅ 22n +1

2n + 2( )⋅ 2n +1( )!
= 22n +3

2n + 3( )⋅ 2n + 3( )!
 for all n ≥ 0.

Therefore, f x dx( ) ≈ −
⋅

+
⋅

−
⋅

=∫
0

2 3 5 7

2
2

3 3

2

5 5

2

7 7

17698

11025! ! !
≈≈ 1 60562.  with error less than 

€ 

29

9 ⋅ 9!
< 0.000157.

Exercise Set B Questions

1.	 (a) Find the first four nonzero terms and the general term of the Maclaurin series 

for 

€ 

g x( )= sin x 2( )∫ dx dx with 

€ 

g 0( )=1 and give its interval of convergence.

	 (b) Use the series in part (a) to find the first four nonzero terms and general term of 

the Maclaurin series for 

€ 

h x( )= xg x( )∫ dx dx that has 

€ 

h 0( )= 0 .

2.	 Find the first four terms and general term of the Maclaurin series for 

€ 

d
dx

x 2

2 − x 2

 

 
 

 

 
  

and give its interval of convergence.

3.	 Use the Maclaurin series for e–x2
to approximate e dxx−∫

2

0

1

. Be sure to provide an 

estimate of the amount of error there could be in your approximation.

4.	 (2001 BC, 6c) A function f is defined by 
  

€ 

f x( )= 1
3

+ 2x
32 + 3x 2

33 +L+
n +1( )xn

3n +1 +L

. Write the first three nonzero terms and general term for an infinite series 

representing f x dx( )∫
0

1

. Use your series to find f x dx( )∫
0

1

.

5.	 (1998 BC, 3c) The function f has derivatives of all orders for all real numbers 

with f (0)  = 5, f ´ (0)  = –3, f ˝ (0)  = 1, and f ´˝ (0)  = 4. Write the third-degree Taylor 

polynomial about a = 0 for h x f t dt
x

( ) = ( )∫
0

.

Exercise Set B Solutions

1.	 (a) Find the first four nonzero terms and the general term of the Maclaurin series 

for 

€ 

g x( )= sin x 2( )∫ dx
 
dx with 

€ 

g 0( )=1 and give its interval of convergence.

	 (b) Use the series in part (a) to find the first four nonzero terms and general term of 

the Maclaurin series for 

€ 

h x( )= xg x( )∫ dx dx that has 

€ 

h 0( )= 0 .  

… …
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(a) From the series for 

€ 

sin x( ) we get

  

€ 

sin x 2( )= x 2 − x 6

3!
+ x10

5!
− x14

7!
+L+

−1( )n x 4n +2

2n +1( )!
+L .

		  Thus 

  

€ 

g x( )= sin x 2( )dx∫
= c + x 2dx∫ − x 6

3!
dx∫ + x10

5!
dx∫ − x14

7!
dx∫ +L+

−1( )n x 4 n +2

2n +1( )!∫ dx +L

= c + x 3

3
− x 7

7 ⋅ 3!
+ x11

11⋅ 5!
− x15

15 ⋅ 7!
+L+

−1( )n x 4n +3

4n + 3( )⋅ 2n +1( )!
+L

	 Since 

€ 

g 0( )=1 we get c = 1  and thus

	
  

€ 

g x( )=1+ x 3

3
− x 7

7 ⋅ 3!
+ x11

11⋅ 5!
− x15

15 ⋅ 7!
+L+

−1( )n x 4n +3

4n + 3( )⋅ 2n +1( )!
+L.

	 The interval of convergence is all real numbers since that was the interval of 

convergence for the series for sin(x).

	 (b) From part (a) we get 

 
xg x( )= x +

x4

3
−

x8

7 ⋅ 3!
+

x12

11 ⋅ 5!
−

x16

15 ⋅ 7!
+L +

−1( )n x4n+ 4

4n + 3( )⋅ 2n + 1( )! +L  and since 

€ 

h 0( )= 0 , we get 

		

 
h x( )=

x2

2
+

x5

15
−

x9

9 ⋅ 7 ⋅ 3!
+

x13

13 ⋅11 ⋅ 5!
−

x17

17 ⋅15 ⋅ 7!
+L +

−1( )n x4n+5

4n + 5( )⋅ 4n + 3( )⋅ 2n + 1( )! +L.       

2.	 Find the first four terms and general term of the Maclaurin series for 

€ 

d
dx

x 2

2 − x 2

 

 
 

 

 
  

and give its interval of convergence.

	 From Problem 2 in Exercise Set A, we have 

  

€ 

x 2

2 − x 2 = x 2

2
+ x 4

22 + x 6

23 + x 8

24 +L+ x 2n +2

2n +1 +L for 

€ 

−1< x <1. Thus

  

€ 

d
dx

x 2

2 − x 2

 

 
 

 

 
 =

d
dx

x 2

2
 

 
 

 

 
 +

d
dx

x 4

22

 

 
 

 

 
 +

d
dx

x 6

23

 

 
 

 

 
 +

d
dx

x 8

24

 

 
 

 

 
 +L+ d

dx
x 2n +2

2n +1

 

 
 

 

 
 +L

= x + 4
22 x 3 + 6

23 x 5 + 8
24 x 7 +L+

2n + 2( )x 2n +1

2n +1 +L

	 which has interval of convergence 

€ 

− 2 < x < 2 . The terms, including the general 

term, could be simplified, but this is not necessary on the exam.

,

… …

…

…

…

…

…

… …

…

…

…

… ….

…

…

… …
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3.	 Use the Maclaurin series for e–x2 to approximate e dxx−∫
2

0

1

. Be sure to provide an 

estimate of the amount of error there could be in your approximation.

	 The series for e–x2 is given by 
  

€ 

e−x 2

=1− x 2 + x 4

2
− x 6

6
+L+

−1( )n x 2n

n!
+L.

	 Thus 
e dx dx x dx

x
dx

x
dxx−∫ ∫ ∫ ∫ ∫= − + − +

2

0

1

0

1
2

0

1 4

0

1 6

0

1

1
2 6

....
!

...

...

+
−( )

+

= − + − + +
−

∫
1

1
1

3

1

10

1

42

2

0

1 n nx

n
dx

11

2 1

( )
+( ) ⋅

+
n

n n!
...

.

	 Since the denominators of the fractions above are increasing, the series for 

e dxx−∫
2

0

1

 satisfies the conditions of the alternating series approximation theorem. 

Thus students can use the sum of any number of terms in the series above and 

then have error less than the absolute value of the first omitted term. For example, 

e dxx−∫ ≈
2

0

1 2

3
 with error less than

€ 

1
10

 or e dxx−∫ ≈
2

0

1 23

30
 with error less than 

€ 

1
42

. 

To have the integral accurate to three decimal places, i.e., error less than 

€ 

0.0005 = 1
2000

, we must use as the last term in the sum the one with n = 5. This 

will guarantee an error of less than 

€ 

1
9360

< 0.000107 .

4.	 (2001 BC, 6c) A function 

€ 

f  is defined by 
  

€ 

f x( )= 1
3

+ 2x
32 + 3x 2

33 +L+
n +1( )xn

3n +1 +L. 

Write the first three nonzero terms and general term for an infinite series 

representing f x dx( )∫
0

1

. Use your series to find f x dx( )∫
0

1

.

	

f x dx dx
x

dx
x

dx( ) = + + + +∫ ∫ ∫ ∫
0

1

0

1

2
0

1 2

3
0

11

3

2

3

3

3
...

nn x
dx

n

n

n

+( )
+

= + + + + +

+

+

∫
1

3

1

3

1

3

1

3

1

3

1
0

1

2 2 1

...

... .... =







−





=

1
3

1
1
3

1

2

5.	 (1998 BC, 3c) The function f has derivatives of all orders for all real numbers 

with f (0)  = 5, f ´ (0)  = –3, f ˝ (0)  = 1, and f ´˝ (0)  = 4. Write the third-degree Taylor 

.

…

…

…

…
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polynomial about a = 0 for h x f t dt
x

( ) = ( )∫
0

. 

The second-degree Taylor polynomial for f about a = 0 is given by 

	

€ 

p x( )= f 0( )+ ′ f 0( )x +
′ ′ f 0( )
2

x 2 = 5 − 3x + 1
2

x 2 . Thus the third-degree Taylor 

polynomial about a = 0 for h is given by p t dt x x x
x

( ) = − +∫
0

2 35
3

2

1

6
.
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Applications of Series to Probability
Ben Klein
Davidson College 
Davidson, South Carolina

We will begin by considering a specific situation involving coin tossing that leads, 

in a natural way, to an infinite series. Along the way, we will introduce some of the 

terminology that appears in books on probability.

Suppose you had a fair coin and decided to toss it until you obtained a head (H). 

If you counted the number of tosses required, you might let 

€ 

X  denote the number of 

tosses. Thus, with T representing tails, 

	 TTH would give X = 3, H would give X = 1, TTTTH would give X = 5.

In probabilistic language, the variable X is called a random variable, i.e., a variable 

whose value is determined by chance.

Now, since the coin is fair, the probabilities of the three sequences above are 1/8, 

1/2 and 1/25 = 1/32, respectively. If we use P to denote probability, we could say

	 P X = 3( )= 1 8, P X = 1( )= 1 2, P X = 5( )= 1 32 .

More generally then, P X x x=( ) = 1
2

 for x = 1, 2, K. Note carefully the standard 

convention of using the lower case equivalent of the name of the random variable to 

represent a value of the random variable.

Now consider the infinite series P X = x( )
x=1

∞

∑ = 1 2( )x

x=1

∞

∑ . If we believe that sooner 

or later, the coin must land head up, then we should believe that the value of this sum 

is 1. In fact, it is, since the series is a geometric series with first term and ratio 1/2, 

and the sum of an infinite geometric series is given by

< 1.L
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Each random variable has an associated distribution function, F. Here we write 

F(x)  + P (X ≤ x).

Even though F (x)  is defined for all real values of x, we will only consider values of x 

that are positive integers. With this understanding, we see that 

€ 

F x( )= P X ≤ x( )= P X = k( )
k=1

x

∑ = 1 2( )k

k=1

x

∑ = 1
2

⋅
1− 1 2( )x

1−1 2

 

 
  

 

 
  =1− 1 2( )x

, using the 

standard formula for the sum of a finite geometric series, i.e.,

( )1

2

0

1
...  if 1

1

nn
n k

k

a r
a ar ar ar ar r

r

+

=

−
+ + + + = = ≠

−∑ .

Note that the distribution function for the random variable is really just the xth 

partial sum for the infinite series 1 2( )k

k=1

∞

∑ , and this shows that partial sums have 

a useful probabilistic interpretation. In fact, the distribution function is even more 

useful than it might seem at first since it is clear that if a and b are integers with 1 ≤ a 

≤ b, then P (a < X ≤ b) = F (b)  – F (a). Thus, for example, the probability that more than 

three but no more than seven tosses are needed to obtain a head is given by

	 P (3 < X ≤ 7) = F (7)  – F (3)  + (1 – 1/27) – (1 – 1/23) = 1/23 – 1/27 = 15/128.

We are about to introduce another probabilistic concept but need to make some 

preliminary remarks first. Suppose that we obtained N values of the random variable 

X. We let V be the set of these values, say, V = {x
1
, x

2
, …, x

N
}. If N were large, we would 

believe that the average of the values in V provided a representative “average value” 

for the random variable X. To find the average of the values in V we would compute 
x x x

N
N1 2+ + +...

.

There is a more convenient way to compute this value, however. If we let n(x) 

denote the number of x
1
 in V that equal x, then 

x x x

N N
x n xN

x

1 2

1

1+ + +
= ⋅ ( )

=

∞

∑...
. (1)

To see why (1) is true, let’s look at an example. Suppose V = {2 ,4, 2, 3, 1, 6, 1, 2, 2, 3}. 

Then 

	 2 + 4 + 2 + 3 +1+ 6 +1+ 2 + 2 + 3  	=    	1 ∙ 2 + 2 ∙ 4 + 3 ∙ 2 + 4 ∙1+ 5 ∙ 0 + 6 ∙1

	 10		  10

	 	 	=  1∙n (1)+2∙n (2)+3∙n (3)+4∙n (4)+5∙n (5)+6∙(n6)

			   10
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To see why (1) is useful, note that 
1
N

x ⋅ n x( )
x=1

∞

∑ = x ⋅
n x( )

Nx=1

∞

∑ . Now if N is large, 

then 
n x( )

N
 will be very close to P (X = x) so we will get a very good approximation 

to the average value of X if we use x ⋅ P X = x( )
x=1

∞

∑ , and we take this sum to be the 

definition of the expected value or mean of the random variable X. We denote the 

expected value of X by E(X) and think of it as the average of a large number of values 

of X, a “long-run” average, if you like.

In the current case, E X( )= x 1 2( )x

x=1

∞

∑ , another infinite series, and we would like 

to find the value of this series. We will use a geometric method first and then use a 

method that exploits some important properties of power series.

Consider the following arrangement in which the bottom row contains the terms 

in the infinite geometric series 1 2( )x

x=1

∞

∑ , the next row up contains all of these terms 

except 1/2, etc. 
...

1/16  ...

1/8  1/16  ...

1/4  1/8  1/16  ...

1/2  1/4  1/8  1/16  ...

If we sum the entries in the bottom row, we get 1; if we sum the entries in the 

next row up, we get 1/2; in the next row up, 1/4; etc. Thus, the sum of all the entries is 

1 1
2

1
4+ + + ... , which is 2. On the other hand, we note that exactly one of the entries 

is 1/2, exactly two are 1/4, exactly three are 1/8, etc. Thus, the sum of the entries can 

also be expressed as x 1 2( )x

x=1

∞

∑ , and therefore we have 

	
E X( )= x 1 2( )x

x=1

∞

∑ = 2 .

CAUTIONARY NOTE: In general, evaluating infinite series by rearranging the terms 

in the series can lead to invalid results. However, in this case, the series in question is 

absolutely convergent, and rearrangement is allowed. 
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As an alternative to the argument above, consider 

f x
x

x x x k

k

( ) =
−

= + + + =
=

∞

∑1

1
1 2

0

... , which is valid for |x| < 1, using the formula for 

the sum of an infinite geometric sequence. Now, if we differentiate both sides, we 

obtain

	

1
1− x( )2 = ′f x( )= kxk −1

k =1

∞

∑  so that 

€ 

x
1− x( )2 = x ′ f x( )= kxk

k=1

∞

∑ .

If we let x = 1/2 here, we get k 1 2( )k

k =1

∞

∑ =
1 2

1− 1 2( )2 = 2 , confirming the previous 

computation.

It might seem strange that the average value of the random variable X is 2, since 

X can take on arbitrarily large values. However, it does so with small probability. 

Remember that X is 1 or 2 with probability 3/4  = 1/2 +1/4, and 

€ 

P X > 4( )= 1
2k

k= 5

∞

∑ =

1
25

 
 
 

 
 
 

1− 1
2

 
 
 

 
 
 

= 1
16

.

The following exercise generalizes everything we have done so far.

Exercise I

Suppose a coin lands head up with probability p where 0 < p < 1. Suppose that this 

coin is tossed repeatedly until a head appears and that X
p
 denotes the number of 

tosses required. Let q = 1 – p. The random variable X
p
 is said to be geometric with 

parameter p. (Note that in the example we just considered, p = 1/2 and the random 

variable is X
1/2

.)

(a)	 Convince yourself that P(X
p
 = x)=qx–1p for x = 1, 2, 3, ....

(b)	 Show that P Xp = x( )
x=1

∞

∑ = qx−1 p
x=1

∞

∑ = 1 . (Hint: This is an easy application of 

the formula for the sum of an infinite geometric series.)

(c)	 Show that the distribution function of X
p
 is 1 – qx for x = 1, 2, 3, .... 

(d)	 Use both of the methods given above to show that E(X
P
) = 1/p, and then 

convince yourself that it is reasonable that if p is close to 0, the average 

number of tosses needed to get a head should be large (because it is very 

hard to get a head), and that if p is close to 1, the average number of tosses 

should be very close to 1 (because we will typically get a head on the first 

toss).
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Next we extend the ideas in Exercise I. Using the coin from the exercise, toss 

the coin until it lands head up twice and let B denote the number of tosses that are 

required. If B=b, then since exactly two of the tosses are H’s, the remaining tosses are 

T’s and the first H can appear on any one of the first b–1 tosses, we have P(B = b) = 

(b–1)qb–2p2. Note that, much as in part (b) of Exercise I, we have

b − 1( )qb−2 p2

b=2

∞

∑ = p2 b − 1( )qb−2 = p2

b=2

∞

∑ bqb−1

b=1

∞

∑ = p2 d
dq

qb

b=0

∞

∑





= p2 d
dq

1
1− q







=
p2

1− q( )2

.

However, since q = 1− p,  p2

1− q( )2 = 1  and therefore P B = b( )
b=2

∞

∑ = 1 , so our claim 

that P B = b( )= (b − 1)qb−2 p2  is consistent. Now we will find the expected value of 

€ 

B. 

We have

E B( )= b
b=2

∞

∑ P B = b( )= b
b=2

∞

∑ b − 1( )qb−2 p2 = p2 d 2

dq2 qb

b=0

∞

∑





= p2 d 2

dq2

1
1− q







= p2 2
1− q( )3 .

But this last expression equals 2/p, and this should really not come as much of 

a surprise. Note that on average we need 1/p tosses to get the first head and then 

another 1/p tosses to get the second head, or 2/p tosses in all. The random variable B 

has a name as well; it is called a negative binomial random variable with parameters  

n = 2 and p.

Before moving on to another “famous” random variable, we need to extend the 

definition of expected value to a more general setting. Suppose that X is a random 

variable that takes on the values {x
1
, x

2
, ...}. Then the expected value of X, i.e.,  E(X), 

is defined as xiP X = xi( )
i=1

∞

∑ , or more simply xP X = x( )∑ , where the second sum is 

understood to be taken over all of the values assumed by X. An example should help 

clarify this idea. 

Example 1

Suppose X takes on the values 1, 3, 5,... with probabilities 1/2, 1/4, 1/8, ...  

respectively, i.e., P X k k= −( ) =2 1 1
2

 for k = 1, 2,.... Then the expected value of X is 

given by

	
E X k k

k

( ) = ⋅ + ⋅ + ⋅ + = −( ) ⋅
=

∞

∑1
1

2
3

1

4
5

1

8
2 1

1

21

... .

We can find the sum of this series using ideas like those used above, but there 

is an easier way. Note that if Y is an arbitrary random variable and Z = a + bY where a 

and b are constants with b, not zero, then since Z = a + bY if and only if Y = y, we have

E Z( )= a + by( )P Z = a + by( )∑ = a + by( )P Y = y( )∑ = aP Y = y( )∑( )+ byP Y = y( )∑( )( ).
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The final expression above can be written as a P Y = y( )∑( )+ b yP Y = y( )∑( )( ), 

and we see that the value of this expression is a + bE Y( )  since P Y = y( )∑ = 1 as 

the probability that Y takes on some value is 1 and, by definition of expected value, 

yP Y = y( )∑ = E Y( ). Thus, we have shown that E a + bY( )= a + bE Y( ). This is a very 

useful result. In this case, using the notation of Exercise I, we see that the random 

variable X in this example can be written as 2X
1/2

 –1, and then using the formula we 

have just established E(X) = 2E(X
1/2
)–1 = 2 ∙ 2 – 1 = 3.

It also needs to be noted that not every random variable has an expected value. 

Here is a simple example that illustrates this fact.

Example 2

Let X = x with probability 
1

1x x +( )
 for x = 1, 2, 3,.... We need to check that the sum of 

the P(X = x) equals 1 to be sure that we have a well-defined random variable. To this 

end, consider 
1

x(x + 1)x=1

n

∑ , the nth partial sum of the infinite series 
1

x(x + 1)x=1

∞

∑ . Since 

1
x x + 1( ) =

1
x

−
1

x + 1
, the partial sum “telescopes” as follows:

	

1

1

1

1

1

2

1

2

1

3

1 1

1 x x n nx

n

( )
...

+
= −



 + −



 + + −

+=
∑

11
1

1

1




 = −

+n
.

Since the limit of this last expression is 1 as n goes to infinity, the infinite series 
1

x(x + 1)x=1

∞

∑  does have a value of 1 as required. Now what about the expected value of 

X? Consider E X( )= xP X = x( )
x=1

∞

∑ =
x

x(x + 1)x=1

∞

∑ =
1

x + 1x=1

∞

∑ .

But we recognize this last series as the harmonic series with its first term 

missing, and we know that this series diverges, or diverges to positive infinity. We 

would say then either that X has an infinite expected value or that the expected value 

of X does not exist.

As a final example before going on to our next (and last) famous random variable, 

we note that random variables can assume negative values. When they do, there 

may be some ambiguity about the existence of their expected values. The following 

example illustrates this.
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Example 3

Suppose that X = 1, 2, 3, –4,... with P X k
k k

k= −( )( ) =
+( )

+1
1

1
1  for k = 1, 2,.... Then, 

as in Example 2, P X = x( )∑ =
1

k k + 1( )k =1

∞

∑ = 1  so the random variable is well defined. 

Moreover, E X xP X x k
k k

k

k

( ) = =( ) = −( )
+( )

= − + −+

=

∞

∑ 1
1

1

1

2

1

3

1

4
1

1

11

5
+∑ ... , and this 

series obviously satisfies the hypotheses of the alternating series test and hence 

converges. Thus, X does have a finite expected value, at least for the moment. In fact, 

since 
1

2

1

3

1

4

1

5
1 1

1

2

1

3

1

4
− + − + = − − + − +



... ... , and the expression in parentheses is 

the “alternating harmonic series,” we see that E(X) = 1 – ln(2).

However, many mathematicians would claim that E(X) does not exist, since 

for them, the existence of the expected value requires that x∑ P X = x( ) converge, 

i.e., that the series that defines the expected value converges absolutely. And, of 

course, we have already seen that this does not happen in this case. Thus, for these 

mathematicians, the expected value of X does not exist.

We introduce another justly famous random variable. If λ is a positive real 

number, define the random variable, X, by P X x
e

x

x

=( ) =
−λ λ

!
 for x = 0, 1, 2, 3,.... This 

is a Poisson random variable, named after the French mathematician Siméon-Denis 
Poisson (1781–1840). We say that it has parameter λ. Before exploring some of the 

properties of X, let us check that it is well defined, i.e., that P X = x( )
x=0

∞

∑ =
λ xe−λ

x!x=0

∞

∑ = 1 . 

In fact, this is an immediate consequence of the well-known identity 
λ x

x!x=0

∞

∑ = eλ , 

which is valid for all real λ. This familiar fact is usually established by considering 

the Maclaurin Series of eλ, showing first that the series converges for all real λ (using 

the ratio test, perhaps) and then showing that the series converges to eλ for all real 

λ (using one of the forms of Taylor’s theorem, perhaps). An alternative derivation 

involving separable differential equations uses the following ideas: the derivative 

with respect to t of the series 
t x

x!x=0

∞

∑  is 

€ 

xtx−1

x!
x= 0

∞

∑ = xt x−1

x!
x=1

∞

∑ = t x−1

x −1( )!
x=1

∞

∑ = t x

x!
x= 0

∞

∑  so 

the function y = y(t)  satisfies y´ = y, and since y(0) = 1. y (t)  = et. A key step is this 

derivation is the observation that x/x! = x/(x(x – 1)!) = 1/x(x – 1)! for x >0.
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Let’s find the expected value of X. Using, once again, x/x! = 1/(x –1)!, we have 

E X( )= x
λ xe−λ

x!x=0

∞

∑ = e−λ λ x

x − 1( )!x=1

∞

∑ = λe−λ λ x−1

x − 1( )!x=1

∞

∑ = λe−λ λ x

x!x=0

∞

∑ = λe−λeλ = λ .

Thus, the parameter λ is actually the expected value of the random variable. 

Poisson Random Variables

Poisson random variables are useful in a number of settings. They generally model 

the number of occurrences of a “rare” event in time intervals of fixed length, for 

example, the number of extinctions of marine invertebrate families in a time interval 

of fixed length. As a second example, the so-called binomial probabilities can be 

approximated by Poisson probabilities. If p is a probability and n is positive integer, 

then C (n,k)pk (1 – p)n–k is a binomial probability where C n,k( )=
n!

k! n − k( )!  is a 

so-called binomial coefficient. Computing one of these binomial probabilities is quite a 

chore if n is large. However, it turns out that 

	 C n,k( )pk 1− p( )n− k ≈
λ ke−λ

k!
 if λ = np and n is large and p is small .

This is not too hard to prove in general, but we will prove only one case, i.e.,  

k = 1, in which case we need to show that

	 np1 1− p( )n−1 ≈
λ1e−λ

1!
= λe

− λ

 if λ = np and n is large and p is small .

We will establish this by showing that the limit of the left-hand side, as n goes to 

infinity, is the right-hand side. We assume that λ = np so that p = λ/n.

	

np1 1− p( )n−1 = λ 1−
λ
n







n−1

=
λ 1− λ

n






n

1− λ
n







1 .

As n goes to infinity, the numerator of the fraction goes to λe–λ, and the 

denominator goes to 1. Thus, we have the result we need. (To find the limit of the 

numerator we used the well-known result lim
n→∞

1+
r
n







n

= er  with r = –λ. You can use 

L’Hopital’s Rule to prove this limit theorem.) To see how good an approximation we 

have, consider n = 25 and p = 0.05, and note that np1(1 – p)n–1 = 0.364986 while  

λe–λ  = 0.358131.

We finish this unit with an interesting result. Suppose that for i = 1, 2, X
i
 is a 

Poisson random variable with parameter λ
i
 We say that X

1
 and X

2
 are independent 
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random variables if P(X
1
 = x

1
 and X

2
 = x

2
) = P(X

1
 = x

1
)P(X

2
 = x

2
). (Independence 

is a crucial property in probability theory and is a much more natural idea than it 

might seem from this definition.) Consider the “new” random variable S = X
1
 + X

2
. 

Let’s see if we can compute P(S = s) where s is a nonnegative integer. We see that 

P S = s( )= P X1 = x and X2 = s − x( )
x=0

s

∑ = P X1 = x( )
x=0

s

∑ P X2 = s − x( )=
λ1

xe−λ1

x!x=0

s

∑ λ2
s− xe−λ2

s − x( )!
.

But 
λ1

xe−λ1

x!x=0

s

∑ λ2
s− xe−λ2

s − x( )! =
e−λ1 e−λ2

s!
s!

x! s − x( )λ1
x

x=0

s

∑ λ2
s− x =

e− λ1 +λ2( )

s!
C s, x( )λ1

x

x=0

s

∑ λ2
s− x , 

and we (hopefully) recognize this last sum as the result of applying the binomial 

theorem to (λ
1
 + λ

2
)S. Then we have proved that 

P S = s( )=
e− λ1 +λ2( )

s!
λ1 + λ2( )s =

λ1 + λ2( )s e− λ1 +λ2( )

s!
. But this implies that S is a Poisson 

random variable with parameter λ
1
 + λ

2
. This is certainly an interesting result. The 

following exercise, which concludes this unit, gives another interesting result of the 

same type.

Exercise II

Suppose that X
1
 and X

2
 are independent geometric random variables with the same 

parameter p. So, P(X
i
 = x) = pqx–1 where q = 1 – p. Let S = X

1
 + X

2
. 

(a) Show that P(S = s) = (s – 1)p2qs – 2 for s = 2, 3,... .

(b) Compare the probabilities given in part (a) with those associated with the 

negative binomial distribution that was introduced right after Exercise I and 

conclude that S is a negative binomial random variable with parameters  

n = 2 and p.

(c) Convince yourself that the sum of two independent geometric random 

variables, each with parameter p, should be a negative binomial random 

variable with parameters n = 2 and p. (Hint: If we toss a coin until we get 

two heads (H’s), we could let X
1
 denote the number of tosses required to get 

the first head and X
2
 denote the number of tosses required to get the second 

head. Then S = X
1
 + X

2
 is the total number of tosses required to get two H’s.)

08-1455.AP.SF.Calculus 0910.indd   91 9/10/08   10:22:44 AM



08-1455.AP.SF.Calculus 0910.indd   92 9/10/08   10:22:44 AM



Approximating the Sum of a Convergent 
Series
Larry Riddle
Agnes Scott College 
Decatur, Georgia

The AP Calculus BC Course Description mentions how technology can be used to 

explore convergence and divergence of series, and lists various tests for convergence 

and divergence as topics to be covered. But no specific mention is made of actually 

estimating the sum of a series, and the only discussion of error bounds is for 

alternating series and the Lagrange error bound for Taylor polynomials. With just a 

little additional effort, however, students can easily approximate the sums of many 

common convergent series and determine how precise those approximations will be. 

Approximating the Sum of a Positive Series

Here are two methods for estimating the sum of a positive series whose convergence 

has been established by the integral test or the ratio test. Some fairly weak additional 

requirements are made on the terms of the series. Proofs are given in the appendix.

Let 
1

n
n

S a
∞

=
= ∑  and let the nth partial sum be 

1

n

n k
k

S a
=

= ∑ . 

1. 	 Suppose ( )na f n=  where the graph of f  is positive, decreasing, and concave up, 

and the improper integral 
1

( )f x dx
∞

∫  converges. Then 

	 1 1
1

( ) ( )
2 2
n n

n nn n
a aS f x dx S S f x dx

∞ ∞+ +
+

+ + < < + − .∫ ∫  	 (1)

In Example 2 you will see how this holds for n ≥ N if we only know f  is positive, 

decreasing, and concave up on the interval [N, ∞).
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2. Suppose ( )na  is a positive decreasing sequence and 1lim 1n
n n

a L
a

+
→∞

= < .  

If 1n

n

a
a

+  decreases to the limit L , then 

  

Sn + an
L

1− L






< S < Sn +
an+1

1−
an+1

an








,	 (2)

If 1n

n

a
a

+  increases to the limit L , then 

  

Sn +
an+1

1−
an+1

an








< S < Sn + an
L

1− L






. 	 (3)

Example 1: 2
1

1

n
S

n

∞

=
= ∑

The function 
2

1
( )f x

x
=  is positive with a graph that is decreasing and concave up 

for x ≥ 1, and ( )na f n=  for all n . In addition, f x( )dx
1

∞

∫  converges. This series 

converges by the integral test. By inequality (1), 

2 2

1 1 1 1

1 2( 1) 2( 1)
n nS S S

n nn n
+ + < < + − .

+ + +

This inequality implies that S is contained in an interval of width 

2 2

1 2 1 1

12( 1) ( 1)n nn n n
− − = .

++ +
If we wanted to estimate S with error less than 0.0001, we could use a value of n 

with 

€ 

1
n n +1( )2 < 0.0002  and then take the average of the two endpoints in inequality 

(4) as an approximation for S. The table feature on a graphing calculator shows that n 

= 17 is the first value of n that works. Inequality (4) then implies that 1.6449055 < S < 

1.64508711 and a reasonable approximation would be 

	 S ≈ 
	 1.6449055 + 1.6450870 

≈ 1.645
	                            2

to three decimal places. With n = 100, inequality (4) actually shows that 1.6449339 < 

S < 1.6449349, and hence we know for sure that S = 1.64493.... Of course, in this case 

we actually know that S = 
2

6 1 644934066S π= = . ... = 1.644934066.... Notice also that S
100

 ≈ 1.6349839, so the 

partial sum with 100 terms is a poor approximation by itself. 

1.	We will use the convention for positive endpoints of truncating the left endpoint of the interval and 
rounding up the right endpoint. This will make the interval slightly larger than that given by the 
actual symbolic inequality.
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Example 2: 
4

1 1n

nS
n

∞

=
=

+
∑

Let 
4

( )
1

xf x
x

=
+

. The graph of f  is decreasing and concave up for 

€ 

x ≥ 2 . Also 

2
4

1
arctan( )

4 21n
x n

x
∞ π= −

+∫
 
and so the improper integral converges. Let 

4
2 1n

nT
n

∞

=
=

+
∑  

with partial sums nT  for 2.n ≥  By inequality (1), 

2 2
4 4

1 1 1 1
arctan(( 1) ) arctan( )

4 2 4 22(( 1) 1) 2(( 1) 1)
n n

n nT n T T n
n n

π + π ++ − + + < < + − −
+ + + +

 

for 2.n ≥  But now add 1a , the first term of the series for 

€ 

S , to each term of this 

inequality to see that 

2 2
4 4

1 1 1 1
arctan(( 1) ) arctan( )

4 2 4 22(( 1) 1) 2(( 1) 1)
n n

n nS n S S n
n n

π + π ++ − + + < < + − −
+ + + +

for n ≥ 2. Using n = 10 in this inequality yields 0 6941559 0 6942724S. < < . . We can 

conclude that 0 694S ≈ .  to three decimal places. 

Example 3: 
0

1

!n
S

n

∞

=
= ∑

The terms of this series are decreasing. In addition, 

1 1 ! 1

( 1)! 1 1
n

n

a n
a n n

+ = ⋅ =
+ +

 

which decreases to the limit l = 0. By inequality (2) 

1
( 1)!

1
1

1

1 !
n

n n n
n

S S S S
n n

+

+
< < + = + .

−
 

for all n. Using n = 10 in this inequality yields 2.7182818 < S < 2.7182819 and hence  

S ≈ 2.7182818. These, of course, are the first seven decimal places of e = 2.718281828….

Example 4: 2
1

1

5n
n

S
n

∞

=
= ∑

We have 
22

1
2 1

1 5 1

1 1 5( 1) 5

n
n

n
n

a n n
a nn

+
+

 = ⋅ = ⋅ ++  
, which increases to the limit L = 

1
5L = .  

According to inequality (3) 
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( )
2 1

1 1
( 1) 5 5

2 2 41 55 1

1

51

nn
n n nn

n

S S S
n

++

+

+ < < + ⋅
−

,

which simplifies to

( ) 22

1 1

4 54 10 5 5
n n nn

S S S
nn n

+ < < + .
+ +

With n = 5, this inequality shows that 0.2110037 < S < 0.2110049.

Example 5: 
1

!
n

n

nS
n

∞

=
= ∑

We have 
( )

1
1 1

( 1)! 1

! 1( 1) 1

nn
n

n n
n

n

a n n n
a n nn

+
+

+  = ⋅ = = ++   +
, which is less than 1 for all n and which 

decreases to the limit L = 
1
eL = . From inequality (2) we get (after some simplification) 

! 1 !

1 ( 1)
n nn n n

n nS S S
en n n

+ < < + .
− + −

Using n = 10 gives 1.8798382 < S < 1.8792548. 

Approximating the Sum of an Alternating Series

Let 1

1

( 1)n
n

n
S a

∞
+

=
= −∑  and let the nth partial sum be 1

1

( 1)
n

k
n k

k
S a+

=
= −∑ . We assume that 

( )na  is a positive decreasing sequence that converges to 0.

1.	 The standard error bound is given by 1 1n n n nS a S S a+ +− < < + .	 (5)

2.	 Suppose the sequence defined by 1n n nb a a += −  decreases monotonically 

to 0. (One way to achieve this is if ( )na f n=  where f  is positive with 

a graph that is decreasing asymptotically to 0 and concave up.) Then 

1if then
2 2
n n

n n n
a aS S S S S+< , + < < + ;  	 (6)

	 1if then
2 2
n n

n n n
a aS S S S S +< , − < < − .

 	
(7)

Both of these can be summarized by the inequality 1

2 2
n n

n
a aS S+ < − < .

Inequality (5) is credited to Leibniz and is the error bound described in the AP 

Calculus BC Course Description. Inequalities (6) and (7) are consequences of a proof 
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published in 1962 by Philip Calabrese, then an undergraduate student at the Illinois 

Institute of Technology (Calabrese 1962). Calabrese proved that nS S− < ε  if 2na ≤ ε , 

 and that furthermore, if 2na = ε  for some n, then nS  is the first partial sum within ε  

of the sum S. See the appendix for the derivation of inequalities (6) and (7).

Example 6: 1

1

4
( 1)

2 1
n

n
S

n

∞
+

=
= −

−∑
This is an alternating series that converges by the alternating series test. If 

€ 

f x( )= 4
2x −1

, then the graph of f  is positive, decreasing to 0, and concave up for 

1x ≥ . For odd n , inequality (7) implies that

2 2

2 1 2 1n nS S S
n n

− < < − .
− +

 	 (8)

If we wanted to estimate the value of S  with error less than 0.0001, the typical 

method using the error bound from inequality (5) would use a value of n  for which 

€ 

an +1 = 4
2n +1

< 0.0001. This would require using 20,000 terms. On the basis of 

inequality (8), however, we can take as an estimate for S  the midpoint of that interval, 

that is, for odd n,

2

1 2 2 4

2 2 1 2 1 4 1
n n

nS S S
n n n

 ≈ − + = − , + −  −
 	 (9)

with an error less than half the width of the interval. So for an error less than 0.0001, 

we only need 
2

1 2 2 2
0 0001

2 2 1 2 1 4 1n n n
 − = < . . − +  −

The first odd solution is n = 71, just a bit less than 20,000! The estimate from (9) 

using n = 71 is S ≈ 3.1415912, with error less than 0.0001. Since S = π, this estimate 

is actually within 1.4 x 10–6 of the true value. By the way, the partial sum S
71

 is 

approximately 3.1556764. 

Example 7: 
0

18
( 1)

(2 )!

n
n

n
S

n

∞

=
= −∑

This is an alternating series that converges by the alternating series test. Let b
n
 = 

a
n
 – a

n+1
. It is not obvious that the sequence b

n
 decreases monotonically to 0. An 

08-1455.AP.SF.Calculus 0910.indd   97 9/10/08   10:22:47 AM



Special Focus: Calculus

98  

investigation with the table feature of a graphing calculator, however, suggests that 

this is true for n ≥ 3. We can therefore use inequality (6) when n is an odd integer 

greater than 3 (note that inequality (6) holds for odd n’s because this series starts with 

n = 0.) Hence 
11 18 1 18

for odd 3
2 (2 2) 2 (2 )

n n

n nS S S n
n n

+
+ < < + ≥ .

+ ! !  
for odd n ≥ 3.

With n = 9 we can estimate that S lies in the interval (–0.4526626, –0.4526477)2, 

an interval of length 1.49 x 10–5. But wait, we can actually do better than this! 

Since the terms of this series decrease so quickly because of the factorial in the 

denominator, we actually have 1
1 2n na a+ <  for n ≥ 3. So if we combine inequalities (5) 

and (6), we can deduce that for this series,

	
1 11 18 18

for odd 3
2 (2 2) (2 2)

n n

n nS S S n
n n

+ +
+ < < + ≥ .

+ ! + !  
for odd n ≥ 3.

Now n = 9 gives the interval (–0.4526626, –0.4526618) containing the value of S, 

an interval of length 8 x 10–7. (Note: What is the exact sum of this series?) 
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Appendix
Proof of Inequality (1)

Let 
1

n
n

S a
∞

=
= ∑  and let 

1

n

n k
k

S a
=

= ∑ . Suppose ( )na f n=  where the graph of f  is positive, 

decreasing to 0, and concave up, and the improper integral 
1

( )f x dx
∞

∫  converges. The 

series converges by the integral test. Because the graph is concave up, the area of 

the shaded trapezoid of width 1 shown in Figure 1 is greater than the area under the 

curve. Therefore ( )2
1 21

1
( )

2

n
n nn

f x dx a a
+

+ ++
< + .∫

Figure 1 Figure 2

Hence ( ) ( ) ( )1 2 2 3 3 41

1 2 3

1

1 1 1
( )

2 2 2
1

2
1

2

n n n n n nn

n n n

n n

f x dx a a a a a a

a a a

S S a

∞
+ + + + + ++

+ + +

+

< + + + + + +

= + + +

= − −

∫ L

L

In Figure 2, the graph of f  lies above the tangent line at 1x n= +  (because of 

the positive concavity) and therefore also lies above the continuation of the secant line 

between 1x n= +  and 2x n= + .  This implies that the area of the shaded trapezoid in 
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Figure 2 of width 1 between x n=  and 1x n= +  is less than the area under the curve, 

and so ( )1
1 1 2

1
( )

2

n
n n nn

f x dx a a a
+

+ + +> + − .∫
Hence 

	
( ) ( ) ( )1 1 2 2 2 3 3 3 4

1 1 2 3

1

1 1 1
( )

2 2 2
1

2
1

2

n n n n n n n n nn

n n n n

n n

f x dx a a a a a a a a a

a a a a

a S S

∞
+ + + + + + + + +

+ + + +

+

> + − + + − + + − +

= + + + +

= + −

∫ L

L

Proof of Inequalities (2) and (3)

Let 
1

n
n

S a
∞

=
= ∑  and let 

1

n

n k
k

S a
=

= ∑ . Suppose ( )na  is a positive decreasing sequence and 

1lim 1n
n n

a L
a

+
→∞

= < , where the ratios decrease to L . The series converges by the ratio 

test. 

Let 1 1n

n

ar
a

+= < .  Then 1k

k

a r
a

+ <  for all k n≥ . Hence

1

2
2 1

3
3 2

n n

n n n

n n n

a a r

a a r a r

a a r a r

+

+ +

+ +

<

< <

< <
M

We therefore conclude that 
1

1

1 1 1 1 1 n

n

k n n
n k n k n a

k n k k a

a r aS S a a a r
r +

∞ ∞ ∞
+

+
= + = =

− = = < = = .
− −

∑ ∑ ∑

But we also have 1k

k

aL
a

+<  for all k n≥ . By a similar argument as above, 

	
1 1 1 1

k
n k n k n n

k n k k

LS S a a a L a
L

∞ ∞ ∞

+
= + = =

− = = > = .
−∑ ∑ ∑

Combining these two results gives inequality (2). A similar argument for the 

inequalities with r  and L  reversed proves inequality (3). 

Proof of Inequalities (6) and (7)

Let 1

1

( 1)n
n

n
S a

∞
+

=
= −∑  and let 1

1

( 1)
n

k
n k

k
S a+

=
= −∑ , where ( )na  is positive decreasing 

sequence that converges to 0. Let 1n n nb a a += − , where we assume that the sequence 

( nb ) also decreases monotonically to 0. Then ( )1 3 5( 1)n
n n n nS S b b b+ + += + − + + +L

 
and 

…

…

…
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( )1
1 2 4( 1)n

n n n nS S b b b+
− + += + − + + + .L

Because the sequence ( nb ) decreases, 

1 3 5 2 4 1n n n n n n n nS S b b b b b b S S+ + + + + −− = + + + < + + + = − .L L

Therefore 1n nS S S S −− < − . Similarly, 1n nS S S S+− < − .  But S  lies between the 

successive partial sums, so it follows that 

1 1 2n n n n n na S S S S S S S S− −= − = − + − > −

and 

1 1 1 2n n n n n na S S S S S S S S+ + += − = − + − < − .

Combining these two results shows that 1

2 2
n n

n
a aS S+ < − < , from which 

inequalities (6) and (7) can be obtained.

…

… …

08-1455.AP.SF.Calculus 0910.indd   101 9/10/08   10:22:49 AM



08-1455.AP.SF.Calculus 0910.indd   102 9/10/08   10:22:49 AM



‘Positively Mister Gallagher. Absolutely 
Mister Shean.’
Steve Greenfield
Rutgers University 
Piscataway, New Jersey

The Title

The comedy team of Gallagher and Shean was very popular in U.S. vaudeville during 

the early 1900s. Their theme song was a huge hit, and its refrain began with the line 

quoted above, “Positively Mister Gallagher. Absolutely Mister Shean!” This seems 

appropriate for an exposition of infinite series that shows how absolutely convergent 

infinite series are almost as nice as convergent series with positive terms. 

I’ll use this “advice arrow” for comments about classroom implementation of some 
of the ideas discussed. I’ll try to record frankly whether it is likely to succeed or not, 
and make some other suggestions. 

Other Kinds of Series

Power series are not the only series that are widely used. In December 2007, Google 

had about 1,120,000 responses to the phrase “power series” and 573,000 responses 

to “Fourier series.” Fourier series are infinite sums of sine and cosine functions. They 

were developed to understand vibrational problems in the late 1700s, and then were 

used by Fourier to analyze heat transfer about 50 years later. The nicest Fourier series 

to consider are those that are absolutely convergent. Any convergent series that 

can be rearranged and regrouped without changing the sum must be an absolutely 

convergent series. Such series are easier to discuss theoretically, and computations 

with partial sums are also more likely to have results that are more reliable 

numerically than computations with conditionally convergent series. 
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Sounds and Fourier Series

I’ll consider Fourier series in the context of sounds and hearing. Sound is vibration in 

a transmitting medium. This could be solid (you can hear through metal or wood) or 

liquid (through water), but usually is gaseous. The standard transmission medium is 

the atmosphere. 

A vibration is produced by, say, a string moving back and 
forth. The string produces a dominant tone that usually 
has the most energy. A picture of a string producing this 
dominant tone is shown to the right. What doesn’t appear, 
of course, is the kinetic aspect of the vibration: how fast the 
string oscillates. The profile of the string when it is most 
distorted from the neutral, rest position is k sin(x) on the 
interval [ 0, π ] (if the units are chosen correctly). The constant  
k measures the amount of energy (loudness).

Natural sound production is complex, and pure tones are 
rarely produced by natural processes. Vibrating objects also 
produce overtones or harmonics, which have frequencies 
with integer multiples of the original frequency. The fingering 
of string or wind instruments can strengthen the production 
of some of the harmonics. Drawn to the right is an attempt to 
show the vibrating string producing the first overtone, which 
would be modeled by sin(2x) on [ 0, π ]. 

A real vibrating string (a guitar) or membrane (a drum) or column of air (a flute) 

produces a complicated collection of tones and overtones. A Web page of the Baylor 

College of Medicine states: 

The sensory organs of the eye, ear, tongue and skin are each sensitive to specific 

forms of energy. The nose and tongue detect chemical energy, the eye detects light 

energy, the skin detects heat and mechanical energy. Sound is a form of mechanical 

energy. Mechanical forces can be steady, like … weight … or they can vibrate, 

like your car when it goes over speed bumps. Sound is generated by mechanical 

vibrations (such as a vibrating piano string). This sets up small oscillations of air 

molecules that in turn cause adjacent molecules to oscillate as the sound propagates 

away from its source. Sound is called a pressure wave because when the molecules 

of air come closer together the pressure increases (compression) as they move 

further apart the pressure decreases (rarefaction). … The velocity of sound in air 

is around 1,100 ft/sec [about 1/3 km/sec] … Sound waves travel fastest in solids, 

slower in liquids and slowest in air. Sound vibrations extend from a few cycles per 

second to millions of cycles per second. Human hearing is limited to a range of 

between 20 to 20,000 cycles per second.3

3.	  From “How the Ear Works--Nature’s Solutions for Listening” by William E. Brownell, Ph.D., Baylor College of Medicine 
(http://www.bcm.edu/oto/research/cochlea/Volta/index.html). Used by permission of William E. Brownell, Ph.D.
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One model of sound for a vibrating string with the ends held fixed would use a 

finite Fourier sine series, 
1

sin( )
N

j
j

a jx
=

∑ . The dominant tone would occur with j = 1,  

and higher j’s would be used for the overtones. The constants a
j
 would indicate the 

relative strengths or amplitudes of the sound. A model of a more general situation 

where the ends of the string would move as well would include cosine terms, but we’ll 

just consider sine series in this discussion. Please note that mathematical modeling of 

what happens to sound and how it is translated to nerve impulses in the human ear is 

not completely satisfactory, and is an object of current research.

To the right is a picture of a specific finite Fourier sine series, f(x) = 
8sin(x) – 4sin(2x) – 6sin(4x). The signal, f, doesn’t seem to display 
in any obvious way the specific amplitudes 8, –4, and –6, along 
with the corresponding frequencies, 1, 2, and 4. But in fact, these 
can be “read off” the graph using some clever natural phenomena. 
Inside the ear, in a structure called the cochlea, there is a collection 
of cells (called colloquially hair cells, but very different from and 
much more sophisticated than the external hair covering mammals) 
that vibrate sympathetically to varying frequencies of the sounds 
transmitted. What they do is respond to the amplitude of sound 
waves of appropriate frequency. The response principally depends on 
the length of the hair cell, but there are variations depending on their 
structure and location. Mathematically, the amount of response is 

modeled by 
0

( )sin( )f x mx dx
π

∫ f(x) sin(mx) dx where m is a positive integer.

Computing Some Integrals 

Let’s compute 
2

0π

π

f x mx dx( ) ( )∫ sin  for f (x)  = 8sin(x)  –4sin(2x)  – 6sin(4 x).

2
8

2
4

0 0π π

π π

f x mx dx x mx dx( ) ( ) = ⋅ ( ) ( ) −∫ ∫sin sin sin ⋅⋅ ( ) ( ) − ⋅ ( ) ( )∫
2

2 6
2

4
0π π

π

sin sin sin sinx mx dx x mx dxx
0

π

∫
A standard exercise using integration by parts and half-angle formulas will show:

	

2 0

1
0π

π

sin sinnx mx dx
m n

m n
( ) ( ) =

≠
=





∫
if

if
 when m and n are integers. The factor 

of 

€ 

2
π

 is chosen to give an integral of 1 when m = n.

How a Physicist Would Compute These Integrals

Since the integrals just mentioned are so important, another way of computing them 

should be mentioned. Of course (!) eix = cos(x)  + isin(x) (Euler’s formula: compare  

the Taylor series on both sides of the equation). Then e–ix = cos(–x)  + isin(–x)  = 

08-1455.AP.SF.Calculus 0910.indd   105 9/10/08   10:22:50 AM



Special Focus: Calculus

106  

cos(x)  – isin(x)  and we can subtract the equations to get eix – e–ix = 2isin(x)  so that 
1
2sin( ) ix ix

ix e e− 
  

= − . Now let’s compute the antiderivative. I’ll do the n ≠ m case:

€ 

sin nx( )sin mx( )dx∫ = 1
2i

einx − e−inx( ) 
 
 

 
 
 

1
2i

eimx − e−imx( ) 
 
 

 
 
 dx∫

= 1
2i

 
 
 

 
 
 

2

ei n +m( )x + e− i n +m( )x − ei n−m( )x − e−i n +m( )x( )dx∫
= − 1

2
 
 
 

 
 
 

2 ei n +m( ) − e−i n +m( )

i n + m( )
− ei n−m( ) − e− i n−m( )

i n − m( )
 

 
 

 

 
 + C

= − 1
2 n + m( )

ei n +m( ) − e− i n +m( )

2i

 

 
 

 

 
 +

1
2 n − m( )

ei n−m( ) − e− i n−m( )

2i

 

 
 

 

 
 + C

= −
sin n + m( )x( )

2 n + m( )
+

sin n − m( )x( )
2 n − m( )

+ C

Back to Fourier Series

The “hair” in the cochlea that is attuned to the mth frequency responds in proportion 

to 
2

0π

π

f x mx dx( ) ( )∫ sin , which is (for f (x)  = 8sin(x) –4sin(2x) – 6sin(4x)),

2
8

2

0

0 0π π

π π

f x mx dx x mx dx( ) ( ) = ⋅ ( ) ( )∫ ∫sin sin sin

iif ; ifm m

x

≠ =

− ⋅ ( )

1 1 1

4
2

2
π

sin sin mmx dx

m m

( )

≠ =

− ⋅∫
0

2 1 2

6
2π

0 if ; if

ππ

π

sin sin4

0 4 1 4

0

x mx dx

m m

( ) ( )

≠ =

∫

if ; if

Therefore 
2

8 1

4 2

6 4

0
0π

π

f x mx dx

m

m

m
( ) ( ) =

=
− =
− =∫ sin

if

if

if

ootherwise










.

Here’s the product 

€ 

2
π

f x( )sin x( )f (x )sin(x )on the interval 

[0, π]. The integral of this product over the whole 

interval is 8.

Here’s the product 

€ 

2
π

f x( )sin 3x( )f (x )sin(3x ) on the interval 

[0, π]. The integral of this product over the whole 

interval is 0.
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Here’s the product 

€ 

2
π

f x( )sin 3x( )f (x )sin(4x ) on the interval  

[0, π] The integral of this product over the whole 

interval is -6.

Here’s the product  

€ 

2
π

f x( )sin 3x( )f (x )sin(5x ) on the interval 

[0, π]. The integral of this product over 

the whole interval is 0.

The pictures help to confirm that the computations are both mysterious and 

wonderful. You can actually see the integrals turning out to be the values already 

found.

Fourier Coefficients 

Let me try to describe what happens in general. First, let’s look at those functions 

that can be written as finite sums of constant multiplies of sine functions. If 

1

( ) sin( )
N

m
m

f x a mx
=

= ∑ , then the results above are still valid: a f x mx dxm = ( ) ( )∫
2

0π

π

sin .  

These numbers are called Fourier coefficients. They are named after Jean Baptiste 

Joseph Fourier (1768–1830), who had an extremely eventful life that included a great 

deal of political turmoil. Acquainted with both Napoleon and Robespierre, certainly 

he was not the stereotypical remote scholar and teacher. Fourier asserted that any 

function could be written as a (possibly infinite) sum of sine and cosine functions. 

Such an infinite series is now called a Fourier series. 

Let’s consider f (x ) = x (π – x ) on the interval [0, π]. If we believe 

that 
1

( ) sin( )m
m

f x a mx
∞

=

= ∑ , then previous manipulations 

(integrations) suggest that the value of each ma  is given by the 

formula ( )2

0
( )sin( )ma f x mx dx

π

π= ∫ . For this ( )f x  we 

can use integration by parts to get 3
8

m m
a

π
=  if m  is odd and 

0  if m  is even. (I think I could do these integrations by hand, 

integrating by parts twice, but I used Maple instead because I 

could.)
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The tenth partial sum of the Fourier sine series for this f (x )  is 
8 8 8 8 8

27 125 343 729sin( ) sin(3 ) sin(5 ) sin(7 ) sin(9 )x x x x xπ π π π π+ + + + . 

 I would show the graph of this function, only most human beings 
couldn’t really see any distinctions between the parabola above 
and this graph. Here is a graph of the difference between the 
original function and the partial sum. Please note the vertical 
scale. The difference between the partial sum and the function is 
between –.005 and .003, not visible to me in the original scale.

Almost 50 years passed before Fourier’s claims about convergence of what’s now 

called the Fourier series were proved for suitable functions. It is now known that if a 

function is twice differentiable then it will be equal to the sum of its Fourier series, 

but that fact is well beyond the scope of this paper. 

Instructional Advice!
I presented the material in the preceding few pages as general background. I 
would be very cautious about showing it to a general audience of students (this 
means I wouldn’t). What follows is material I have used in class to successfully 
stimulate questions and help students learn. I’ll begin with an investigation 
that combines several aspects of calculus and can be used both in class and to 
construct thoughtful homework questions. I’ll return to Fourier series later.

Mean Square Error

Here’s a homework question I have assigned, accompanied by hoped-for versions of 

answers. 

Part (a) For x near 0, sin(x) is well approximated by its tangent line at x = 0. What is 

this tangent line?

Answer This part should be easy for the well-educated 
calculus student. Since sin´ = cos, the slope of the 
tangent line to y = sin(x) at x = 0 is cos(0) = 1, and an 
equation for this tangent line is y = x. Although a picture 
is not requested, students may think of an image 
resembling what’s shown.

Part (b) Approximation over an interval is preferred over approximation near a point 

for many purposes. One criterion for assessing the accuracy of such an approximation 

is mean square error. The mean square error between a straight line y = Ax going 
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through the origin and the function sin(x) over the interval [0, 1] is given by the 

definite integral ( )1 2

0
sin( )x Ax dx−∫ (sin(x) – Ax)2 dx. Find the value of A that minimizes this integral. 

Hint: Expand the integrand, compute the integral, and find the A minimizing the 

result. 

Answer: This is decidedly not a routine question for most of my students. Let’s call 

f (A) the value of ( )1 2

0
sin( )x Ax dx−∫  

(sin(x) – Ax)2 dx.. We can expand (sin(x) – Ax)2  to get (sin(x))2 

– 2Ax sin(x) +A2x2. Now integrate (I am omitting the use of integration by parts; I 

usually assign this problem soon after integration by parts is introduced). 

sin sin cos six Ax x A x dx x( )( ) − ( ) +( ) = − ( )∫ 2 2 2

0

1

2
1

2
nn cos sinx

x
A x x x

A x( ) + − − ( ) + ( )( ) +






=

2
2

3

2 3

0

1

−− ( ) ( ) + − ( ) + ( ) +

≈

1

2
1 1

1

2
2 1 2 1

3
0

2

cos sin sin cosA A
A

.. . .27268 0 60234 0 33333 2− +A A

So we know that f A A A( ) = − +0 27268 0 60234 0 33333 2. . . , a quadratic polynomial 

with a positive second-degree coefficient, has a unique minimum when 

′( ) = − + =f A A0 60234 0 666666 0. . , and that happens when A ≈ 0 90351. . 

Comment: I hope when I assign this problem, and when it is subsequently 

discussed in class, that students may have made some connection with how they 

treat numerical data obtained in a science lab. Very frequently a “best” linear 

approximation idea is mentioned there, and sometimes the least squares method of 

fitting data may even be suggested (the formulas needed are frequently available 

on calculators). I used 1 as the upper bound of the integral instead of something 

more “sine-ish” like 2
π  because I want numbers here. The squaring of the integrand 

means that differences can’t cancel, and there will be exactly one easily computable 

minimum for f (A). If instead we defined f (A)  as 
1

0
sin( )x Ax dx| − |∫ |sin(x) – Ax|dx, there would still be 

a minimum, but it would not be readily computable. The minimum for this definition 

is A ≈ 0.919, and that took some work to get.

I also hope that students would think about the following pictures: 

A is too large:  
The upper chunk of area is too big.

A is just right. A is too small: 
The lower chunk of area is too big.
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Part (c) Sketch sin(x) and the straight lines found in (a) and (b) on the unit interval  

[0, 1].

Answer: The desired picture is displayed at right.

Comment: This is not a simple problem. The “tangent line” 
idea includes an approximation theme: The very best closest 
line to a curve near a point is the tangent line. Making this 
precise leads to the limit of the slope, etc. But if we change 
the game and ask: whether there is a simple line that will 
give, on average, numbers that are closer to a given function 
over an entire interval, we may well get a different answer. 
Here we consider sine, the interval [0, 1], and lines through 

the origin. The answer is 0.90351x, certainly different from x.

Back to Fourier Coefficients

The Taylor polynomials of a function at a point are the partial sums of the Taylor 

series. These Taylor polynomials are the best—the closest polynomials of their degree 

to the function near that point. In this way they generalize tangent lines. What about 

Fourier series? 

If f (x)  is defined on [0, π], we previously defined the mth Fourier coefficient,a
m
, by 

the formula a f x mx dxm =
2

π
∫
0

π
( )sin( ) . This definition is related to mean square error. 

The coefficient a
m
 is the unique A that minimizes 2

0
( ( ) sin( ))f x A mx dx

π
−∫ . To verify 

this we start with

	

f x A mx dx f x dx A f x( ) − ( )( ) = ( )( ) − ( )∫ ∫sin si2

0

2

0

2
π π

nn sinmx dx A mx dx

f x dx

( ) + ( )( )

= ( )( ) −

∫ ∫

∫
0

2 2

0

2

0

π π

π

22
20

2A f x mx dx A( ) ( ) + ⋅∫ sin
π π

This is minimized when 
d

dA
f x dx A f x mx dx A( )( ) − ( ) ( ) + ⋅



 ∫ ∫2

0 0

22
2

π π π
sin




= − ( ) ( ) + ⋅ =∫2 2

2
0

0

f x mx dx Asin
π π

, 

 leading to A f x mx dx= ( ) ( )∫
2

0π

π

sin . This clearly provides a minimum for the mean 

square error by using the second derivative test. The Fourier series of a function 

satisfies a different minimization criterion from Taylor series. The partial sums of the 

Fourier series are best mean square approximations to the function. 
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What does this mean in practice? If someone wants to numerically sample a 

function or use a function to model the result of an experiment over a range of inputs, 

the Fourier series or its partial sums are likely to be more useful and more accurate 

on average than Taylor series. So for small perturbations near a known input, Taylor 

series are good. Over a range of inputs, Fourier series should be considered.

Back to Absolutely Convergent Series

Suppose we have an infinite series 
1

j
j

a
∞

=
∑  that converges absolutely. Then consider the 

function defined by this Fourier sine series: f x a jxj
j

( ) = ( )
=

∞

∑ sin
1

.

Since f x a jx a jx aj
j

j
j

j
j

( ) = ( ) ≤ ( ) ≤
=

∞

=

∞

=

∞

∑ ∑ ∑sin sin
1 1 1

 and values of sine are always at most 1 in absolute 

value, we have f x a jx a jx aj
j

j
j

j
j

( ) = ( ) ≤ ( ) ≤
=

∞

=

∞

=

∞

∑ ∑ ∑sin sin
1 1 1

. So any absolutely 

convergent series creates a nice function on [0, π]. This function is always continuous, 

but verifying this assertion is not something I would do in any calculus class. 

Another Homework Problem

Here is an ambitious homework problem that I have assigned, together with some 

answers. Students can solve this problem, and the problem can provide them with 

further understanding of convergence of an infinite series. But (as I am sure you 

realize) very few students will have the background given on the last few pages of this 

article. 

This is a problem about a Fourier cosine series. All the corresponding results for 

Fourier cosine series are true and follow from the same logic as the results for sine 

series. Some of the formulas in this example are easier to manipulate when cosines 

are used instead of sines. Please read what’s below for verification of this claim. 

Instructional Admission
I have used the following homework problem in several classes, with varying 
amounts of success. That the partial sum is always so close to the true function 
is amazing, and I want students to understand this: A machine can’t add up 
infinitely many numbers, but it certainly can rapidly compute the one-hundredth 
partial sum. When this partial sum is graphed, it can’t be distinguished from the 
whole infinite series, either on screen or printed out. 
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Problem stem: Define f (x)  by the sum 2 cos( )

0

( )
n nx

n
n

f x
∞

!
=

= .∑  This is not a power series. 

Below is a graph of the partial sum 
100

2 cos( )
100

0

( )
n nx

n
n

s x !
=

= ∑  of the series for 0 ≤ x ≤ 20.

 

Part (a) Verify that the series defining f (x)  converges for all values of x. 

Answer: We will prove that the series converges absolutely for all values of x and 

because absolute convergence implies convergence, the series converges for all values 

of x. Since |cos(anything)|≤1, 
2 cos( ) 2

n nnx
n n! !≤ . We know that 

€ 

2n

n!
n= 0

∞

∑  converges and that 

€ 

2n

n!
n= 0

∞

∑ = e2 . Observing the inequalities indicates that |f (x) |≤e 2 for all values of x.

Part (b) Is the apparent periodicity of the function f (x)  actually correct? If yes, 

explain why. 

Answer: Yes, f (x)  is periodic with period 2π. For integer n, cos(n(x + 2π)) =  
cos(nx +2nπ) = cos(nx) since cosine is 2π periodic. So all the terms in the infinite 

series for f (x  + 2π) are identical to the terms in the infinite series for f (x).

Part (c) Verify that the actual graph of the function is always within 0.01 of the graph 

shown. That is, if x is any real number, then |f (x)  –s
100

(x) | < 0.01. 

Answer: Again the observation |cos(anything)|≤1 will simplify our work. We know 
100

2 cos( ) 2 cos( ) 2 cos( ) 2
100

0 0 101 101

( ) ( )
n n n nnx nx nx

n n n n
n n n n

f x s x
∞ ∞ ∞

! ! ! !
= = = =

| − |= − = ≤∑ ∑ ∑ ∑ . This infinite tail can be 

overestimated by a geometric series because the ratio between successive terms of 

the tail series is 2
1n+  (the tops of the tail series terms are powers of 2, and the bottom 

are factorials). Here n ≥ 101, so the ratio is at most 2 1
102 51= . So the tail series is less 

than the geometric series  
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with 
1012

(101)a !=  and 1
51r = . This is ( ) ( )

1012
101 (101)

1
51

2 1
(101) 51 1

0

n

n

!
∞

! −
=

=∑ , which has an approximate value 

of 0.27 ∙ 10-129. This result is much smaller than 0.01, so the graph shown is very much 

like the true graph. 

Not for Everyone
What’s below is a discussion showing that the function itself, the sum of the 
whole series, can be written as a neat formula using well-known functions. 
This result is not obvious, and I thank my colleague, Professor Amy Cohen, for 
helping me with this computation. I have shown calculus students (interested 
students, outside of standard class time) these details. I would not do this to a 
whole class.

What is This Function?

Step 1

Euler’s formula states that eix = cos(x) +isin(x).

Step 2

If we substitute nx for x, we see that einx = cos(nx) +isin(nx).

Step 3

This problem is about the series 2 cos( )

0

n nx
n

n

∞

!
=

∑ . But the preceding step makes me want to 

consider the following: 2 cos( ) 2 sin( )

0 0

n nnx nx
n n

n n
i

∞ ∞

! !
= =

   +      
∑ ∑ .

Step 4

So we are looking at ( )2 cos( ) sin( )

0

n nx i nx
n

n

∞
+
!

=
∑ , which is equal to 

2

0

n inxe

n
n

 
  

∞

!
=

∑ . 

Step 5

But 
ninx ixe e 

  
= , so this is the series 

2 2

0 0

n nn ix ixe e

n n
n n

   
      

∞ ∞

! !
= =

=∑ ∑ .
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Step 6

The exponential function is 
0

nA A
n

n
e

∞

!
=

= ∑ . The series we are considering has 2 ixA e= , so 

the sum of the series must be 
2 ixee

 
   . 

Step 7

Euler’s formula states that this is 

€ 

e2 cos x( )+ i sin x( )( ) = e2 cos x( )+2i sin x( ). 

Step 8

The exponential function converts addition to multiplication, and therefore we know 
2cos( ) 2 sin( ) 2cos( ) 2 sin( )x i x x i xe e e+ = . 

Step 9

Look at 2 sin( ) (2sin( ))i x i xe e= . Use Euler’s formula again, replacing the x  in  

the original formula with 2sin( )x . The result is (2sin( )) cos(2sin( )) sin(2sin( ))i xe x i x= + . 

Step 10

The series sum is

( )2cos( ) (2sin( )) 2cos( ) 2cos( ) 2cos( )cos(2sin( )) sin(2sin( )) cos(2sin( )) sin(2sin( ))x i x x x xe e e x i x e x ie x= + = + .

Step 11

Compare the results of Step 3 and the preceding step. The same quantities are being 

described. The “real parts” (the quantities without i) should be the same, so therefore 

(but not clearly, definitely not clearly): 

€ 

2n cos nx( )
n!

n= 0

∞

∑ = e2 cos x( ) cos 2sin x( )( )

Indeed, a graph of 2cos( ) cos(2sin( ))xe x  looks the same as the graph that began the 

problem.

Just One More Example...

Let’s take a specific convergent positive series: 1
2

1
j

j

∞

=
∑ . This is so nice that I even 

can tell you its sum, which is 1. We know if we put this series together with sines 

we’ll get a result that converges, and always has a value of between –1 and 1. The 

frequencies inside the sines do not affect convergence, since the values outside of the 

sine functions will still be between –1 and 1. Because absolute convergence implies 

convergence, nothing will go wrong….
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Here is what can go wrong. This wrongness disturbed many mathematicians in 

the nineteenth century. I’ll select the frequencies inside the sines in a strange way. 

Here we go: Define the function f  by 1
2

1

( ) sin(3 )j
j

j
f x x

∞

=

= ∑ . Some pictures of partial 

sums of this series and of the derivatives of these partial sums follow. Examine the 

pictures closely. Pay close attention to the vertical scales of the graphs, because they 

are nearly unbelievable!

The Tenth Partial Sum and Its Derivative

Graph of

10
1
2

1

sin(3 )j
j

j
x

=
∑

Graph of

€ 

d
dx

sin 3 j x( )
2 j

j=1

10

∑
 

 
 
 

 

 
 
 =

3 j

2 j cos 3 j x( )
j=1

10

∑

The Twentieth Partial Sum and Its Derivative

Graph of

 

20
1
2

1

sin(3 )j
j

j
x

=
∑

Graph of

€ 

d
dx

sin 3 j x( )
2 j

j=1

20

∑
 

 
 
 

 

 
 
 =

3 j

2 j cos 3 j x( )
j=1

20

∑
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The Thirtieth Partial Sum and Its Derivative

Graph of

30
1
2

1

sin(3 )j
j

j
x

=
∑

Graph of

€ 

d
dx

sin 3 j x( )
2 j

j=1

30

∑
 

 
 
 

 

 
 
 =

3 j

2 j cos 3 j x( )
j=1

30

∑

Discussion of the Pictures

Let’s deal with the three graphs on the left. They hardly differ. This is because their 

sum is a function f, and the error is easy to estimate. We defined f by the equation 

1
2

1

( ) sin(3 )j
j

j
f x x

∞

=

= ∑ . So we can write 
10

1 1 1
2 2 2

1 1 11

sin(3 ) sin(3 ) sin(3 )j j j
j j j

j j j
x x x

∞ ∞

= = =

= +∑ ∑ ∑ . 

The error in the first graph of the partial sums is at most 

10
1 1 1
2 2 2

11 11

sin(3 ) 001j j
j

j j
x

∞ ∞

= =

| |≤ = < .∑ ∑ . The error in the second graph is at most  

€ 

1
220 < 0.000001<0.000001, and the error in the third graph is 

€ 

1
230 < 0.000000001<0.000000001. Since the partial 

sums are approximations of the same limit, their graphs are identical (at least to my 

eyes, on this scale). 

The graphs on the right have a very different aspect. I had the graphs created 

using Maple and this program is quite accurate. Please consider the vertical scales 

carefully, and deduce information about the ranges of the derivatives of these partial 

sums. The derivative of the tenth partial sum seems to have values between –150 and 

150. The derivative of the twentieth partial sum seems to have values between –8,000 

and 8,000. The derivative of the thirtieth partial sum seems to have values between 

–450,000 and 450,000. These graphs are not getting closer to one another, and they 

are not “stabilizing” in any sense. They actually seem to be getting more chaotic. 

What’s happening? 
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A Continuous Function That Is Differentiable at No Point 

When we try to differentiate 1
2

1

sin(3 )j
j

j
x

∞

=
∑  using the rules we love to follow, the chain 

rule leaves us with an unappealing multiplier, 3
2

j

j , of the function cos(3 jx).  While 

the values of cosine occupy [–1, 1], this multiplier gets large very rapidly. Things do 

not cancel out, and we have an example of a function that is continuous at every point 

and differentiable at no point! Verification of the last claim is straightforward but 

tedious. 

That such functions exist was acknowledged only with great reluctance by many 

authorities in mathematics during the nineteenth century. Although the example 

given here is usually attributed to Weierstrass or Riemann, Bolzano had similar ideas 

and examples several decades earlier. (Bolzano also seems to have been the first 

person to give a statement resembling the version of the intermediate value theorem 

we currently use [1817]). 

The idea of a continuous nowhere differentiable function was very distasteful, 

and the examples were widely viewed as artificial and absurdly theoretical. Most of 

the academic mathematicians of the late nineteenth century were quite reluctant 

to accept the validity of the results. But these functions really describe natural 

phenomena. In fact, some observations done many years earlier were consistent with 

the graphs shown above. 

In 1827, biologist Robert Brown microscopically observed the motion of pollen 

in water. The pollen seemed to jump bizarrely, in strange and jagged paths—very 

different from the smooth motion of, say, a cannon ball in a parabolic trajectory. 

Observation of dust particles gave the same sort of results, so the motion couldn’t be 

attributed to some sort of life force in the pollen grains. This movement of the particles 

was named Brownian motion. The doctoral thesis of Bachelier in 1900 connected 

Brownian motion with variations in stock and option markets. Such jagged graphs 

typically appear in many financial reports. One of Einstein’s famous results of 1905 

explained Brownian motion using probability — the particles of dust move as a result 

of random molecular collisions, and the molecular motion is what we perceive as heat. 

The paths typically are not smooth curves, and are usually not differentiable. 

In the last 20 or 30 years, Brownian motion and related topics have been 

extensively studied by mathematicians and physicists, and nondifferentiable 

functions are standard tools in mathematical finance and other applications. 
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