AP® CHEMISTRY 2016 SCORING GUIDELINES

Question 4

$$C_6H_5OH(aq) + H_2O(l) \iff C_6H_5O^-(aq) + H_3O^+(aq)$$

$$K_a = 1.12 \times 10^{-10}$$

Phenol is a weak acid that partially dissociates in water, according to the equation above.

(a) What is the pH of a $0.75 M C_6 H_5 OH(aq)$ solution?

$$K_a = \frac{[C_6H_5O^-][H_3O^+]}{[C_6H_5OH]}$$

$$1.12 \times 10^{-10} = \frac{x^2}{(0.75 - x)}$$
 Assume that $x << 0.75$.

$$x^2 = 8.4 \times 10^{-11}$$

$$x = \sqrt{8.4 \times 10^{-11}}$$

$$x = 9.2 \times 10^{-6} M$$

$$x^2 = 8.4 \times 10^{-11}$$

$$x = \sqrt{8.4 \times 10^{-11}}$$

$$x = 9.2 \times 10^{-6} M$$

$$x = 9.2 \times 10^{-6} M$$

pH = $-\log[H^+] = -\log(9.2 \times 10^{-6}) = 5.04$

1 point is earned for a correct setup and calculation of [H⁺].

1 point is earned for the correct setup and calculation of pH based on a correct setup for the [H⁺] calculation.

(b) For a certain reaction involving $C_6H_5OH(aq)$ to proceed at a significant rate, the phenol must be primarily in its deprotonated form, $C_6H_5O^-(aq)$. In order to ensure that the $C_6H_5OH(aq)$ is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form $(C_6H_5O^-(aq))$. Justify your answer.

Numbers 10 through 14 should be circled.

When pH > p K_a , the deprotonated form will predominate. $pK_a = -\log(1.12 \times 10^{-10}) = 9.95$, therefore at pH 10 and above, $[C_6H_5O^-] > [C_6H_5OH]$.

1 point is earned for circling 10–14.

1 point is earned for the justification.

1 2 5 9 10 11 12 13 14

$$C_6H_5OH(aq) + H_2O(l) \rightleftharpoons C_6H_5O^-(aq) + H_3O^+(aq)$$
 $K_a = 1.12 \times 10^{-10}$

- 4. Phenol is a weak acid that partially dissociates in water according to the equation above.
 - (a) What is the pH of a 0.75 $M C_6H_5OH(aq)$ solution?
 - (b) For a certain reaction involving $C_6H_5OH(aq)$ to proceed at a significant rate, the phenol must be primarily in its deprotonated form, $C_6H_5O^-(aq)$. In order to ensure that the $C_6H_5OH(aq)$ is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form $(C_6H_5O^-(aq))$. Justify your answer.

1 2 3 4 5	6 7 8 9	(10) (11) (12) (13) (14)
a) ColyoH + H2U	≥ C6H5-U-	+ H30+
	0	0
c -× -	+ X	+ x
E 0.75-X	· ×	×
$1.12 \times 10^{-10} = X$	2 X <<	0.75 because
0.75	5-X	Le is very small
$\frac{1.12 \times 10^{-10}}{0.75}$		
0,75		
x 2 = 3.4 × 10-11		
$x = 9.21 \times 10^{-6} =$	[4+]	
pt= - lag (9.2 x 10	1-6) = [5.04]	
b) oH = pka + log [A-]	when (CA-] >1, A->50%
		CHA)
plt=pkg when	A-1 CHA1=1	
= -log(1.12×10-10) = 9.951	
= -log(1.12×10-10 when [HA] >1,	pH > pKa	
	pH > 9.951	
	pH=110,11,1	2,13,14
when [4+0-]=		PH = pKa = 9.951.
For any Solution wh		

ADDITIONAL PAGE FOR ANSWERING QUESTION 4
pH>pka. In basic solutions with pH>pka,
the equilibrium is shifted to the left enough so
mat CC6H5O-J > [C6H5OH].
··
·
·

GO ON TO THE NEXT PAGE.

- 4. Phenol is a weak acid that partially dissociates in water according to the equation above.
 - (a) What is the pH of a $0.75 M C_6 H_5 OH(aq)$ solution?
 - (b) For a certain reaction involving $C_6H_5OH(aq)$ to proceed at a significant rate, the phenol must be primarily in its deprotonated form, $C_6H_5O^-(aq)$. In order to ensure that the $C_6H_5OH(aq)$ is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle <u>each</u> pH for which more than 50 percent of the phenol molecules are in the deprotonated form $(C_6H_5O^-(aq))$. Justify your answer.

$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$		8	10) 1) (12 (13 (14)
at R CGH-OH	+H, 0 = CcHs	9"+H,0+		T ~
I 0,75	1	Ö		man real of the state of the st
C -X	- · · · · · · · · · · · · · · · · · · ·	+ X	13 3 MA 1 TO 100 MI	
€ 0.75	×	. X		a a same responsible a la fallación de la fall
r ar stoppe ment				. 5
X 3 75.75 =	1.12×10-10	F 100 000 1,000		10 10 10 10 10 10 10 10 10 10 10 10 10 1
x=9,16x	0-6	,,,,	1 APPEAR BOOK 1	· · · · · · · · · · · · · · · · · · ·
	$(x10^{-6}) = 5.04$	Families No. 2 122		
[PH=5,04]		e e e e e e e e e e e e e e e e e e e	ales a same a security and the second	
	-log([Hz0+])-		JEH21) -1.	og ([CA])
b) PH = -loc	Pka - log (EA		243) /	2000
917 = 9	95 - log (EA-))	concent	rotion of
According to	this formula	, whenevo	x AT the	depronated
acid or Cotte o				()
the pH will	be below the	é oka, o	r9,95,	As such.
all ph's 9 or	below MII	have a l	niaher ce	onentration
AP / 11-0- 1	11		0	
OF CCHEUT	han HCGH5C)		
OF CCHEU +	han HCGH5C	>		

Unauthorized copying or reuse of any part of this page is illegal.

- 4. Phenol is a weak acid that partially dissociates in water according to the equation above.
 - (a) What is the pH of a $0.75 M C_6 H_5 OH(aq)$ solution?
 - (b) For a certain reaction involving $C_6H_5OH(aq)$ to proceed at a significant rate, the phenol must be primarily in its deprotonated form, $C_6H_5O^-(aq)$. In order to ensure that the $C_6H_5OH(aq)$ is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form $(C_6H_5O^-(aq))$. Justify your answer.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14$

@ pH=-log[0.75M] pH25	Carlo
DH-0.125	- Grades
pH=PKa Mogration	
pH=9.95 + 0	
(pH=9.95)	

6 deprotonated > more electrons there are
more products than reactants when the solution is more basic because [A-] > [HA] so log [HA] > 0 which gets added to the pka making it more basicand greater than the original pH of 9.95.
Solution is more basic because [A]>[HA]
[N-7]
So log 11/2 > U which acts added to the
I DIA
pha making it more basicand greater
than the original DH of 9.95.
_

Unauthorized copying or reuse of any part of this page is illegal.

AP® CHEMISTRY 2016 SCORING COMMENTARY

Question 4

Overview

Ouestion 4 explored students' knowledge of weak acid equilibrium conditions in aqueous solution and conjugate acid/base relationships in a buffered solution. Students were given two scenarios involving solutions of phenol, C_6H_5OH (aq). In part (a) students were to calculate the pH of a 0.75 M solution of phenol given the K_a value for this weak acid. In part (b) students were asked to select pH values of a buffered solution that would ensure more than 50% of the phenol was in its deprotonated form, $C_6H_5O^-(aq)$.

Sample: 4A Score: 4

In part (a) 1 point was earned for setting up and correctly calculating [H⁺], and 1 point was earned for setting up and correctly calculating the pH. In part (b) 1 point was earned for circling numbers 10–14, and 1 point was earned for a justification that clearly describes buffers with a greater concentration of conjugate base than conjugate acid corresponding to a pH > pK_a .

Sample: 4B Score: 3

In part (a) 1 point was earned for setting up and correctly calculating [H⁺], and 1 point was earned for setting up and correctly calculating the pH. In part (b) no point was earned for circling numbers 1–9; however, 1 point was earned for a justification consistent with the circled numbers. The student makes a sign error using the Henderson-Hasselbalch equation and matches the increasing concentration of conjugate base with a *decreasing* pH.

Sample: 4C Score: 2

In part (a) neither of the two possible points were earned; the student calculates [H⁺] incorrectly and bases the calculation of pH on an incorrect application of the Henderson-Hasselbalch equation. In part (b) 1 point was earned for circling numbers 10–14, and 1 point was earned for a consistent justification that describes the increase of conjugate base concentration and increased base/acid ratio when pH > pK_a .