AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES

Question 3

The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by
$g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
(c) Find the absolute minimum value and the absolute maximum value of g on the

Graph of f interval $-4 \leq x \leq 12$. Justify your answers.
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.
(a) The function g has neither a relative minimum nor a relative maximum at $x=10$ since $g^{\prime}(x)=f(x)$ and $f(x) \leq 0$ for $8 \leq x \leq 12$.
(b) The graph of g has a point of inflection at $x=4$ since $g^{\prime}(x)=f(x)$ is increasing for $2 \leq x \leq 4$ and decreasing for $4 \leq x \leq 8$.
(c) $g^{\prime}(x)=f(x)$ changes sign only at $x=-2$ and $x=6$.

x	$g(x)$
-4	-4
-2	-8
6	8
12	-4

On the interval $-4 \leq x \leq 12$, the absolute minimum value is $g(-2)=-8$ and the absolute maximum value is $g(6)=8$.
(d) $g(x) \leq 0$ for $-4 \leq x \leq 2$ and $10 \leq x \leq 12$.

1: $g^{\prime}(x)=f(x)$ in (a), (b), (c), or (d)

1 : answer with justification

1 : answer with justification
$4:\left\{\begin{array}{l}1: \text { considers } x=-2 \text { and } x=6 \\ \quad \text { as candidates } \\ 1: \text { considers } x=-4 \text { and } x=12 \\ 2: \text { answers with justification }\end{array}\right.$

2 : intervals

NO CALCULATOR ALLOWED

Graph of f
3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.

$$
g^{\prime}(x)=f(x)
$$

g does not have a relative minimum or maximum at $x=10$ because $g^{\prime \prime}(x)=f(x)$ does not change sign at this point
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.

$$
g^{\prime \prime}(x)=f^{\prime}(x)
$$

$$
f^{\prime}(x)=g^{\prime \prime}(x) \text { does change sigh }
$$

(o) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your answers.

$$
\begin{array}{lll}
g^{\prime}(x)=f(x)=0 & x=-2 \quad x=2 \\
& x=6 & x=10
\end{array}
$$

does not change sigh at $x=2$ and $x=10$

x	$g(x)$
-4	$\int_{2}^{-4} f(t) d t=-8+4=-4$
-2	$J_{2}^{-2} f(t) d t=-8$
6	$J_{2}^{6} f(t) d t=8$
12	$\int_{2}^{12} f(t) d t=8-8-4=-4$

The absolute minimum value of g on the interval $-4 \geq 1312$ is -8 and the absolute maximilian value of 915.8
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.

$$
g(x)=\int_{2}^{x} f(t) d t \leq 0
$$

$g(x)=0$ at $x=2$ and $x=10$
$g(x) \leq 0$ in the intervals $-4 \leq x \leq 2$
and $10 \leq x \leq 12$

NO CALCULATOR ALLOWED

Graph of f
3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have ar elative minimum, a relative maximum, or neither at $x=10$? Justify your answer.

$$
\begin{array}{cc}
g^{\prime}(x)=f(x) \quad & g \text { is ne tither at } x=10 \\
g^{\prime}(10)=f(10)=0 & \text { bc } g^{\prime}(x) \text { does not change } \\
& \text { from pos to neg or neg to } \\
& \text { pos at } x=10 .
\end{array}
$$

(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer,

$$
\begin{aligned}
& g^{\prime \prime}(x)=f^{\prime}(x) \\
& f^{\prime}(4)=0
\end{aligned}
$$

$$
\text { be } g^{\prime \prime}(4) \leq 0 \text { and } g^{\prime \prime}(x)>0
$$

when $2 \leqslant x<4$ and $g^{\prime \prime}(x)<0$ When $4<x<8$.

NO CALCULATOR ALLOWED
(c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your answers.

$$
\begin{gathered}
g^{\prime}(x)=f(x)=0 \\
x=-2,2,6,10
\end{gathered}
$$

$a b s \max \rightarrow x=6 \quad a b s \min \rightarrow x=-2$
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.

$$
\int_{2}^{x} f(t) d x=0
$$

3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
$g^{\prime}(x)=f(x)$
Sink $g^{\prime}(x)=f(x)$; the graph of o has a relative maximum or $x=10$ because the graph of f moreacice before $x=10$ and decueaces after $x=10$ and $x=10$ is a critical point.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
$g^{\prime \prime}(x)=f^{\prime}(x)$
Sure $g^{\prime \prime}(x)=f^{\prime}(x)$, the graph of g has, an inflection port $a x t x=4$ because the graph of f moreaces before $x=4$ and decreaces after $x=4$.
(c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$.

Justify your answers.
$f^{\prime}(x)=f(x)=0$

$$
x=-2,2,6,10
$$

 The consolute vatu for hath extremes ore 0 snake It of fou o $h(x)=f(x)=0$.
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.
$g(x)$ is decrasmg when $g^{\prime}(x)$ is ≤ 0 and $g^{(x)}$ is ≤ 0
give $g^{\prime}(x)=f(x)$ and $g^{\prime \prime}(x)=f^{\prime}(x)$, we know the nt
$6<x<10$ and $10<x<12$ are the ante menvald
 ore decreasing (hover the sane sign).

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2016 SCORING COMMENTARY

Question 3

Overview

In this problem students were given the graph of f, a piecewise-linear function defined on the interval $[-4,12]$. A second function g is defined by $g(x)=\int_{2}^{x} f(t) d t$. In part (a) students needed to determine whether g has a relative minimum, a relative maximum, or neither at $x=10$, and justify their answer. Using the Fundamental Theorem of Calculus, students needed to recognize that $g^{\prime}(x)=f(x)$ for all x in the interval $[-4,12]$. Since $g^{\prime}(10)=f(10)=0$ and $f(x) \leq 0$ for $[8,12]$, the First Derivative Test may be applied to conclude that there is no relative extremum at $x=10$. In part (b) students needed to determine whether the graph of g has a point of inflection at $x=4$, and justify their answer. Since $g^{\prime}(x)=f(x)$, the graph of g has a point of inflection at $x=4$ because f changes from increasing to decreasing at $x=4$. In part (c) students needed to find the absolute minimum value and the absolute maximum value of g on $[-4,12]$. Since $g^{\prime}(x)=f(x)$, students were expected to find relative extrema of g by identifying x-values where f changes sign. The absolute extrema occur either at the endpoints of the interval or at the relative extrema. By comparing the values of g at the four candidate x-values, students choose and justify the absolute extrema. Properties of the definite integral and the relation of the definite integral to accumulated area must be used to find the values of g. In part (d) students needed to find all intervals in $[-4,12]$ for which $g(x) \leq 0$. This part also required properties of the definite integral and the relation of the definite integral to accumulated area.

Sample: 3A

Score: 9

The response earned all 9 points. The student earned the $g^{\prime}(x)=f(x)$ point in part (a). In part (a) the student earned the point with justification " $g^{\prime}(x)=f(x)$ does not change sign at this point." In part (b) the student earned the point with justification " $f^{\prime}(x)=g^{\prime \prime}(x)$ does change sign at $x=4$. " In part (c) the student identifies the absolute minimum and absolute maximum values with a candidates test that uses the necessary critical points. In part (d) the student gives the two correct closed intervals.

Sample: 3B

Score: 6

The response earned 6 points: 1 point for $g^{\prime}(x)=f(x)$, 1 point in part (a), no points in part (b), 3 points in part (c), and 1 point in part (d). The student earned the $g^{\prime}(x)=f(x)$ point in part (a). In part (a) the student earned the point with justification " $g^{\prime}(x)$ does not change from pos to neg or neg to pos at $x=10$." In part (b) the student gives the correct answer but includes an incorrect statement that $g^{\prime \prime}(4)=0$. In part (c) the student earned the first 2 points. The student does not identify the absolute minimum as -8 or the absolute maximum as 8 . The student earned 1 of the 2 answers with justification points. In part (d) the student does not include the endpoints of the intervals, so 1 point was earned.

Sample: 3C

Score: 3

The response earned 3 points: 1 point for $g^{\prime}(x)=f(x)$, no points in part (a), 1 point in part (b), 1 point in part (c), and no points in part (d). The student earned the $g^{\prime}(x)=f(x)$ point in part (a). In part (a) the student has

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2016 SCORING COMMENTARY

Question 3 (continued)

an incorrect answer. In part (b) the student's work is correct. In part (c) the student earned the first point by identifying $x=-2$ and $x=6$ in the second line. The student earned no other points. In part (d) the student has an incorrect interval $(6,10)$ that has no values where $g(x) \leq 0$.

