

urricu	ar Requirements	Page(s)
CR1	Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format.	1
CR2a	The course design provides opportunities for students to develop understanding of the foundational principles of kinematics in the context of the big ideas that organize the curriculum framework.	2
CR2b	The course design provides opportunities for students to develop understanding of the foundational principles of dynamics in the context of the big ideas that organize the curriculum framework.	3
CR2c	The course design provides opportunities for students to develop understanding of the foundational principles of gravitation and circular motion in the context of the big ideas that organize the curriculum framework.	3, 8
CR2d	The course design provides opportunities for students to develop understanding of the foundational principles of simple harmonic motion in the context of the big ideas that organize the curriculum framework.	8
CR2e	The course design provides opportunities for students to develop understanding of the foundational principles of linear momentum in the context of the big ideas that organize the curriculum framework.	5
CR2f	The course design provides opportunities for students to develop understanding of the foundational principle of energy in the context of the big ideas that organize the curriculum framework.	5
CR2g	The course design provides opportunities for students to develop understanding of the foundational principles of rotational motion in the context of the big ideas that organize the curriculum framework.	7
CR2h	The course design provides opportunities for students to develop understanding of the foundational principles of electrostatics in the context of the big ideas that organize the curriculum framework.	11
CR2i	The course design provides opportunities for students to develop understanding of the foundational principles of electric circuits in the context of the big ideas that organize the curriculum framework.	11
CR2j	The course design provides opportunities for students to develop understanding of the foundational principles of mechanical waves in the context of the big ideas that organize the curriculum framework.	10
CR3	Students have opportunities to apply AP Physics 1 learning objectives connecting across enduring understandings as described in the curriculum framework. These opportunities must occur in addition to those within laboratory investigations.	4, 13
CR4	The course provides students with opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become scientifically literate citizens.	4, 6, 13
CR5	Students are provided with the opportunity to spend a minimum of 25 percent of instructional time engaging in hands-on laboratory work with an emphasis on inquiry-based investigations.	1
CR6a	The laboratory work used throughout the course includes investigations that support the foundational AP Physics 1 principles.	2
CR6b	The laboratory work used throughout the course includes guided-inquiry laboratory investigations allowing students to apply all seven science practices.	2, 4, 6, 7, 8 9, 11
CR7	The course provides opportunities for students to develop their communication skills by recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations.	1, 4, 5, 8, 9
CR8	The course provides opportunities for students to develop written and oral scientific argumentation skills.	2,6

Course Overview

The course focuses on the interconnections between the various strands and units contained in the course syllabus and how each contributes to the "Big Ideas" that provide a core foundation for this science course. Problem solving techniques and strategies are fine tuned throughout the year, and students are continually tasked with connecting physics applications learned in different units in order to synthesize solutions to complex problems.

The course textbook was specifically chosen due to its focus on key underlying principles and modeling of physics phenomena in a manner similar to the "Big Ideas".

Course Text: Knight, Randall D., Jones, Brian, and Field Stuart. 2007. *College Physics: A Strategic Approach*. 1st Edition. Pearson Addison-Wesley. San Francisco. **[CR1]**

Students have the opportunity to meet the learning objectives in a variety of ways and to apply their knowledge to real world experiences and societal issues. Instructional time involves a variety of student-centered activities. Students have the opportunity to work cooperatively to solve challenging problems and to present their solutions to the class. Throughout the year connections to the world are explored in discussions, group projects, and class demonstrations. Laboratory work, described below, offers frequent opportunities to work cooperatively, explore ideas, and present information. Outside of class students read the assigned text and complete homework assignments that support and reinforce each lesson as well as what has been learned in the laboratory setting. Unit exams take place at the end of each block of instruction. Students also attend tutorial sessions where they can receive individual assistance from the instructor and work with their peers.

Students spend 25% of the instructional time engaged in hands-on laboratory work. **[CR5]** Experiments designed by the instructor are used to demonstrate procedural guidelines and to learn how to use specific laboratory equipment. The majority of labs are inquiry-based where students are given an objective and a set of materials. They are tasked with designing a procedure and collecting data to determine specific quantities, determine the relationship between variables, and/or to derive fundamental physics equations. Laboratory design, experimentation, data gathering, data presentation, analysis, drawing conclusions, and experimental error analysis are elements in these lab activities.

Laboratory work is recorded in a laboratory notebook, and students will have opportunities to present their laboratory work to their peers. All aspects of the laboratory work including any pre-lab work, question/hypothesis, experimental procedure, data, analysis, graphs, conclusion, and error analysis will be recorded. **[CR7]** Additional information as indicated in the following pages will also be included in the lab notebook. At the end of completing the lab work for the investigations that are labeled "Guided-Inquiry," the students will present their method, data and conclusions on whiteboards. The class will then engage in peer critique of each group's results, and discuss strategies CR1— Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format.

CR5— Students are provided with the opportunity to spend a minimum of 25 percent of instructional time engaging in hands-on laboratory work with an emphasis on inquiry-based investigations.

CR7— The course provides opportunities for students to develop their communication skills by recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations.

CR8— The course provides opportunities for students

AP[®] Physics 1 Sample Syllabus 3

Syllabus 1066433v1

to decrease error and suggest further investigations. [CR8]

		to develop written and oral
	Unit 1: Kinematics [CR2a]	scientific argumentation skills.
Big Idea 3: The interactio	ns of an object with other objects can be described by forces.	
Big Idea 4: Interactions b	etween systems can result in changes in those systems.	CR2a— The course design
Course Sequence	Student Labs and Activities [CR6a]	provides opportunities for students to develop
Course Introduction Physics conventions Measurements Significant figures	Read 1.1 to 1.7 and 2.1 to 2.7 and 3.1 to 3.7 Groups discuss how a system, such as a bicycle, a car, the solar system, an atom, etc., can be viewed as a particle(s), an object(s), and as a system in different situations. (EU 1.A)	understanding of the foundational principles of kinematics in the context of the big ideas that organize the curriculum framework.
Orientation		CR6a— The laboratory work
Intro to center of mass Objects and systems Inertial frames Coordinate system	Lab 1: Constant velocity. Structured lab to demonstrate lab format and expectations. Record and graph displacement versus time data. Generate velocity and acceleration graphs. (EU 3.A, 4.A) (SP 2, 5)	used throughout the course includes investigations that support the foundational AP Physics 1 principles.
Scalars and vectors Kinematic variables and rates Position Distance,	Lab 2: [Guided-Inquiry] Design an experiment. Given a track (capable of being inclined to a measureable angle), a low friction cart, a meter stick, and a timing device, students will design a lab to determine the acceleration of the cart. Students will describe the observed motion qualitatively, organize the data into a meaningful table, and construct a graph that can be used to determine the acceleration of the object. (EU 3.A,	
Displacement Speed, Velocity Acceleration Deriving kinematic equations and problem solving techniques	4.A) (SP 2, 3, 4, 5) [CR6b] Lab 3: Free fall. Structured lab to demonstrate computer data acquisition. Using computer-based data collection, students will record the time for a free falling object from various heights. Students will graph results in order to determine the value of the acceleration of gravity. (EU 3.A, 4.A) (SP 2, 5)	CR6b— The laboratory work used throughout the course includes guided-inquiry laboratory investigations allowing students to apply all seven science practices.
One-dimensional kinematics	Compare and contrast the graphs of constant velocity and acceleration. Record in lab book. (EU 3.A) (SP 5)	
Qualitatively describing motion associated with experimental results and real world examples	Describe the trip from home to school in terms of distance, displacement, speed, velocity, and acceleration. Generate a matching velocity-time graph for the motion described. Record in lab book. (EU 3.A) (SP 1)	
Graphical motion analysis	Lab 4: Projectile motion. Students will fire a projectile horizontally and mathematically use the results to determine the launch velocity. Subsequently students will fire the	

Syllabus 1066433v1

AP[®] Physics 1 Sample Syllabus 3

Course Comucines	Chudomt Labo and Asticition	1
Course SequencePosition, velocity, and acceleration time graphsFreefall Acceleration of gravityTwo-dimension kinematics Vector components Vector addition Relative motion Projectile motionUniform Circular Motion Period Tangential velocity Centripetal acceleration	Student Labs and Activitiesprojectile at several launch angles while experimentally determining maximum height and maximum range. Results will be compared to calculated values. Students will also construct a variety of graphs involving displacement, velocity, and acceleration. (EU 3.A, 4.A) (SP 2, 4, 5)Groups given scenarios involving actual uniform circular motions will draw vectors representing tangential velocity and centripetal acceleration. For each scenario, the period, speed, and acceleration will be determined. Record in lab book. (EU 3.A, 3.B) (SP 1, 2, 7)	
Unit 2: Dynamics [CR2b] [CR2c] Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Big Idea 2: Fields existing in space can be used to explain interactions.		CR2b—The course design provides opportunities for students to develop understanding of the foundational principles of dynamics in the context of
Big Idea 3: The interactio	ns of an object with other objects can be described by forces. Netween systems can result in changes in those systems.	the big ideas that organize the curriculum framework.
Inertial mass, Law of Inertia Force Agent and object Contact forces Long-range forces Gravity field Identifying forces Weight Tension Normal force Force of springs	Read 4.1 to 4.8, 5.1 to 5.8, and 6.1 to 6.7 Define inertia and its connection to mass. Given several examples of motion of objects, all having differing masses, assess the general effect of mass on motion. (EU 3.A) Groups research weight, tension, normal force, restoring force, friction, drag, and applied forces. Identify the agent, the magnitude of the force, and the direction of the force. Share the results with the class. (EU 2.A, 3.A, 3.C) (SP 6) List the requirements for an object to experience a force. Explain why there must be an action-reaction pair, and explain why objects cannot place a force on themselves. Share your explanation with a partner. (EU 3.A) (SP 6)	CR2c— The course design provides opportunities for students to develop understanding of the foundational principles of gravitation and circular motion in the context of the big ideas that organize the curriculum framework.

AP® Physics 1 Sample Syllabus 3

Course Sequence	Student Labs and Activities	
Friction	[Connecting Across Enduring Understandings] – Given pictures	CR3— Students have opportunities to apply
Drag	of common objects in real world settings, students will	AP Physics 1 learning
Objects and systems	identify one object and one system. For each object/system, identify the forces acting on the object and system, identify the action-reaction pair, construct a free-body diagram, and predict the motion of the object and the system. Share the	objectives connecting across enduring understandings as described in the curriculum
Force vectors	results with another student and critique each other. (LO 1.A.5.1, 3.A.4.3, 3.B.1.1) (SP 1, 6, 7) [CR3] [CR7]	framework. These opportunities must occur
Free-body diagrams		in addition to those within
Newton's Second Law	Given a variety of scenarios, students will construct a free body diagram, assess the type of motion experienced by the object, determine the magnitude and direction of the sum	laboratory investigations.
Newton's Third Law	of the force vectors, and determine the objects acceleration. (EU 3.B, 4.A)	opportunities for students to develop their communication skills by
Problem solving	Lab 5. Statics Using masses strings and envire scales	recording evidence of their
Net force	Lab 5: Statics. Using masses, strings, and spring scales, students will suspend the masses in several configurations	research of literature or scientific investigations
Statics	while recording the tension in each string. The results will also	through verbal, written,
Dynamics	be compared to free-body diagrams of each suspended mass.	and graphic presentations.
Inclines	(EU 3.A, 3.B) (SP 1, 2, 5, 7)	
	Groups will be given diagrams consisting of compound	
Compound bodies	bodies in various configurations. Identify objects/systems and prepare free-body diagram. (LO 1.A.5.1, 3.A.4.3) (SP 1)	
Advanced equilibrium and dynamics problems involving a variety of forces and interacting objects	Lab 6: [Guided-Inquiry] Atwood's Machine. Determine the acceleration of gravity using two masses, a string, a pulley, a meter stick, and a timer. (EU 1.A, 1.C, 3.A, 3.B) (SP 2, 4, 5) [CR6b]	CR6b— The laboratory work
Uniform circular motion		used throughout the course
Centripetal force	Lab 7: [Guided-Inquiry] Given a ramp, a pulley, a string, unequal masses, a meter stick, a timer, and a spring scale,	includes guided-inquiry laboratory investigations
Force problems involving uniform circular motion	design a series of experiments to determine the coefficients of static and kinetic friction. In addition, determine the	allowing students to apply all seven science practices.
Apparent weight in	acceleration of the object when forces are unbalanced. (EU 1.A, 1.C, 3.A, 3.B) (SP 1, 2, 3, 4, 5, 6, 7) [CR6b]	CR4— The course provides students with
circular motion	Students will research, design, build, and test a simple rocket. Students present launch and flight results along with suggested improvements. Students apply their improvements and rebuild the rocket to assess the change in performance. [CR4]	opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become
	Groups given real world scenarios involving uniform circular motion will draw vectors representing tangential velocity,	scientifically literate citizens.

Course Sequence	Student Labs and Activities	
•	centripetal acceleration and centripetal force, complete free-body diagrams, determine equations solving for the centripetal force, acceleration, and tangential velocity for the object. Share and critique the results with another group. (EU 1.A, 3.A, 3.B) (SP 1, 2, 7) [CR7]	CR7— The course provides opportunities for students to develop their communication skills by
	Lab 8: Determine the speed of a mass moving as a conical pendulum using two methods: kinematics of uniform circular motion and by summing forces. Compare the results obtained by both methods. (EU 1.A, 3.A, 3.B) (SP 1, 2, 4, 5, 7)	recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations.
	Students will analyze various real world scenarios that create apparent weight. Record in lab book. (EU 3.A, 3.B) (SP 1, 2, 3, 7)	CR2e— The course design provides opportunities for students to develop
	it 3: Conservation Laws [CR2e] [CR2f]	understanding of the
5	ns of an object with other objects can be described by forces.	foundational principles of linear momentum in
	etween systems can result in changes in those systems.	the context of the big
conservation laws.	occur as a result of interactions are constrained by	ideas that organize the curriculum framework.
Energy	Read 10.1 to 10.10 and 9.1 to 9.2	CR2f— The course design
Energy model Internal energy Total mechanical energy Kinetic energy Potential energy Gravitational Elastic	Class will create an energy model to visualize the relationships between energies within a system. The conditions for both an open and closed system will be established, and examples of each will be discussed. Given specific examples, students will use the model to suggest the source of a change in energy and the resulting effect on both the system and the environment. Record in lab book. (4.C, 5.A, 5.B) (SP 1, 2)	provides opportunities for students to develop understanding of the foundational principle of energy in the context of the big ideas that organize the curriculum framework.
Work Dot product of vectors Conservative forces Non-conservative forces Constant force	Students will be given a variety of diagrams showing systems in various positions. Students will access the energies comprising the system's internal energy. Students will qualitatively and quantitatively determine changes to these energies as a result of changes within the system. (EU 4.C, 5.B) (SP 1, 2, 6)	
Variable force	Students will categorize previously learned forces as either conservative or non-conservative. (EU 5.B) (SP 1)	
Work Kinetic Energy Theorem	Work will be demonstrated by applying a variety of forces to various objects. Students will make predictions regarding	
Conservation of energy Conservative forces Non-conservative forces	the resulting motion. Students will make predictions regarding to determine how a force must be applied to change the internal energy of a system. Record in lab book. (EU 4.C, 5.B) (SP 1)	

Course Sequence	Student Labs and Activities	
Power Graphing energy, work, and power	Lab 9: [Guided-Inquiry] Design a lab to determine the effect on internal energy due to non-conservative forces. Data collected will be presented graphically in order to determine the work done. In addition, students will calculate changes in kinetic energy to the work done. Students will share the	
Linear momentum	results with the class and discuss whether or not the results are consistent with the work energy theorem (EU 3.E, 4.C, 5.B) (SP 1, 2, 4, 5, 6) [CR6b]	CR6b— The laboratory work used throughout the course includes guided-inquiry
Impulse		laboratory investigations
Open and closed systems Conservation of linear momentum	Students will make qualitative predictions on changes in kinetic energy given force and velocity vectors. Students will also solve quantitative problems using the work-kinetic energy theorem. Students will compare the work values obtained with their qualitative observations and with the results obtained using force and distance to determine work.	allowing students to apply all seven science practices.
Elastic collisions	(EU 3.E, 4.C) (SP 2)	
Inelastic collisions Perfectly inelastic collisions Explosions	Given a variety of systems, students will use conservation of energy to determine key data at various locations for a moving object or changing system. (EU 5.A, 5.B) (SP 2)	
Explosions	[Real World Application] Students will be assigned to several	[
Energy in collisions Graphing Impulse	teams, and each team will research sources of energy (solar, fossil fuels, wind, geothermal, hydroelectric, etc.) and the cost-benefit of each. Student teams present findings to the class and argue the merits of their assigned energy source. [CR4] [CR8]	CR4— The course provides students with opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become scientifically literate citizens.
	Students will determine the change in momentum of various objects given their mass and initial velocity along with either: the objects resulting velocity; the force acting to change momentum and the time during which it acts; or graphical representation of force and time. (EU 3.D, 4.B) (SP	
	2, 5, 6)	CR8— The course provides
	Given a real world scenario, students will design a plan to collect and organize data in order to determine the relationship between changes in momentum and average force.	opportunities for students to develop written and oral scientific argumentation skills.
	Articulate the difference between open and closed systems and their affect on conserved quantities. (EU 5.A) (SP 6, 7)	
	Given various collisions students must identify them as elastic, inelastic, or perfectly elastic. Students must predict the resulting motion of colliding objects, and verify their predictions using the appropriate conservation of momentum calculations.	

Course Sequence	Student Labs and Activities	
	When relevant, calculations may include kinetic energy lost. Record in lab book. (EU 5.D) (SP 2, 3, 6, 7)	
	Lab 10: [Guided-Inquiry] Using low friction carts, capable of colliding elastically and inelastically, students will design experiments to verify conservation of momentum and kinetic energy for both types of collisions. Analysis will include graphing the motion of each cart before during and after the collision. (EU 5.D) (SP 2, 3, 4, 5, 6, 7) [CR6b]	CR6b— The laboratory work used throughout the course includes guided-inquiry laboratory investigations allowing students to apply all seven science practices.
	Unit 4: Rotation [CR2g]	
•	ns of an object with other objects can be described by forces.	CR2g— The course design
•	etween systems can result in changes in those systems.	provides opportunities
Big Idea 5: Changes that conservation laws.	occur as a result of interactions are constrained by	for students to develop understanding of the
Center of mass	Read 7.1 to 7.6 and 8.1	foundational principles of rotational motion in
Rotational objects viewed as systems Rotational kinematics	Given various symmetrical objects and systems, students will locate the center of mass and state its relationship to the linear and rotational motion of a freely moving object. (EU 4.A) (SP 5)	the context of the big ideas that organize the curriculum framework.
Angular displacement Angular velocity Angular acceleration Related tangential quantities	After seeing several demonstrations, students will compare the effect on the center of mass due to forces acting within a system to forces acting on the system. In addition, students must recognize that if no external forces act, the system will move at constant velocity. (EU 4.A, 5.D) (SP 1, 2, 6)	
Moment of inertia Parallel axis	Describe how a rotating system can be visualized as a collection of objects in circular motion. (EU 1.A) (SP 1)	
theorem Torque Torque vectors	Students will compare rotational and linear quantities and solve rotational kinematic problems using previously learned techniques. (EU 4.D) (SP 2, 7)	
Cross product of vectors Right hand rule	Groups will be given a scenario where a compound body is experiencing rotation. Students will identify the components of force creating torque, characterize each torque as positive or negative, determine the net torque, and determine the resulting motion of the system. Groups will share their scenarios and findings and critique each other. They will record their own and the other group's findings in the lab book. (EU 3.F) (SP 1) [CR7]	CR7— The course provides opportunities for students to develop their communication skills by recording evidence of their research of literature or scientific investigations through verbal, written, and graphic presentations.

Course Sequence	Student Labs and Activities	
Rotational statics Rotational dynamics	Lab 11: [Guided-Inquiry] Students will design a lab to demonstrate rotational statics. (EU 3.F) (SP 4, 5) [CR6b]	CR6b— The laboratory work used throughout the course
Conservation of energy in rotation	Lab 12: Given an apparatus that rotates horizontally due to the vertical motion of a mass draped over a pulley, students will collect a variety of data to determine the moment of inertia	includes guided-inquiry laboratory investigations allowing students to apply
Angular momentum Angular momentum vectors Right hand rule Change in angular momentum	of the rotating system, the net torque acting on the system, the angular and linear acceleration, the final velocity of the system, the work done during the motion. Students will also use conservation of energy to determine the final velocity and compare this to the value obtained using torque and kinematics. (EU 3.F, 4.D, 5.B) (SP 4, 5)	all seven science practices.
Conservation of angular momentum	Given a rotating system, students will determine angular momentum using both linear and rotational variables. Students will make predictions and compare how interactions with external objects or changes within the system can influence angular momentum. (EU 4.D, 5.E) (SP 1, 2, 3, 7)	
	Lab 13: [Guided-Inquiry] Using a pulley and a rotating platform, students will design a lab involving a rotating system where a net torque results in angular acceleration. Students will also make changes to the system's configuration to explore the effect on angular momentum. Students will compare the change in angular momentum to the change in average torque multiplied by time. (EU 3.F, 4.D, 5.E) (SP 1, 2, 4, 5) [CR6b]	
Unit	5: Oscillations and Gravity [CR2c] [CR2d]	CR2c— The course design
Big Idea 1: Objects and sy internal structure.	stems have properties such as mass and charge. Systems have	provides opportunities for students to develop
Big Idea 2: Fields existing	in space can be used to explain interactions.	understanding of the foundational principles of
•	ns of an object with other objects can be described by forces.	gravitation and circular
•	etween systems can result in changes in those systems.	motion in the context of the big ideas that organize the
Big Idea 5: Changes that c conservation laws.	occur as a result of interactions are constrained by	curriculum framework.
Restoring forces Hooke's Law	Read 14.1 to 14.7 and 6.1 to 6.7	CR2d— The course design provides opportunities
Equilibrium	Working in groups, students will predict which properties influence the motion of an oscillating spring and an oscillating pendulum. Students will share their predictions. (EU 3.B) (SP 6, 7)	for students to develop understanding of the foundational principles of simple harmonic motion
Simple harmonic motion Spring	Lab 14: [Guided-Inquiry] Hooke's Law and oscillations. Students will design a two-part lab. In the first part, they	in the context of the big ideas that organize the curriculum framework.

AP® Physics 1 Sample Syllabus 3

Course Sequence	Student Labs and Activities	
Simple pendulum Physical pendulum	will determine the relationship between a spring's restoring force, spring constant, and displacement. In the second part of the lab, students will examine the oscillation of the spring determining the period of the assillation, the approximately	
Period and frequency Force and energy	determining the period of the oscillation, the energy of the system, and the force and speed acting on the mass at various locations during the oscillation. (EU 3.B, 5.B) (SP 4, 5) [CR6b]	CR6b— The laboratory work used throughout the course
relationships during an oscillation Graphing oscillations	Students will compare and contrast a simple pendulum and a physical pendulum. (EU 3.B, 5.B) (SP 6, 7)	includes guided-inquiry laboratory investigations allowing students to apply all seven science practices.
Fundamental forces Long range forces Gravity field Mass and weight Newton's Law of Gravity Inverse Square Law Elliptical orbits	Given potential energy graphs of an oscillation, students working in groups will qualitatively and quantitatively analyze the motion. Analysis will include determining frequency and period, identifying equilibrium, identifying the significance of minima and maxima, determining the force constant, determining values of force and acceleration, and determining kinetic energy and total energy. Results will be shared with another group and critiqued, and then both	
Kepler's Laws Conservation of angular momentum Conservation of	sets of results will be added to the lab book. (EU 3.B, 5.B) (SP 3) [CR7] <i>Lab 15: [Guided-Inquiry] Using a pendulum, students will</i>	CR7— The course provides opportunities for students to develop their communication skills by
energy Circular orbits Orbital speed	design a lab to determine the strength of the gravity field on Earth. (EU 3.B, 5.A, 5.B) (SP 2, 3, 4, 5, 7) [CR6b]	recording evidence of their research of literature or scientific investigations through verbal, written,
Escape speed	Discuss gravity as a fundamental force, how it is represented as gravity field, and the relationship between the gravitational field and gravitational force. (EU 2.A, 2.B, 3.G)	and graphic presentations.
	Compare and contrast inertial mass and gravitational mass. (EU 1.C)	
	Diagram and compare the uniform gravitational field near Earth's surface with the radial field surrounding Earth. Determine the magnitude and direction of the gravity field and the gravitational force acting on a smaller mass inserted into the field. Investigate the effect of moving objects in each field. (EU 1.A, 1.C, 2.A, 2.B, 3.A, 3.B, 3.C) (SP 1, 2, 6, 7)	
	Use the inverse square law to predict the magnitude of the gravity field at a specific location in space. (EU 2.B)	
	Students will compare elliptical and circular orbits, listing Kepler's Laws, using conservation of angular momentum	

Course Sequence	Student Labs and Activities	
	and/or energy to determine the orbiting bodies speed in various parts of an elliptical orbit, and determine speed and escape speed in circular orbits. (EU 3.A, 5.A, 5.B, 5.E)	
	Lab 16: Students will use the PhET simulation "My Solar System" to construct a planetary system consisting of a sun and a single planet. They will vary the radius and determine the speed required for uniform circular motion, and graph the data to calculate "G" for the PhET "universe." (EU 3.A, 5.A, 5.B, 5.E) (SP 1,2,4,5,6)	
Unit	6: Mechanical Waves and Sound [CR2j]	CR2j— The course design
Big Idea 6: Waves can trai	nsfer energy and momentum from one location to another ansfer of mass and serve as a mathematical model for the	provides opportunities for students to develop understanding of the foundational principles
Medium	Read 15.1 to 15.7 and 16.1 to 16.7	of mechanical waves in
Dependence on medium for mechanical waves, but not for	Students will see demonstrations of transverse and longitudinal waves. Working in groups, they will create a	the context of the big ideas that organize the curriculum framework.
electromagnetic waves	wave model explaining how independent oscillators act in characteristic patterns in order to transmit energy. Students will diagram each type of wave and label key elements such as equilibrium, wavelength, and amplitude. Particular	
Mechanical waves	attention will be focused on examining the direction of the	
Transverse waves	oscillations as compared to the direction of energy transfer. Students will site real world examples of mechanical waves,	
Waves on a string Longitudinal waves Sound	such as strings and sound. (EU 1.A, 6.A, 6.B) (SP 1, 6, 7)	
	Given a variety of interfering wave functions, students will	
Period and frequency	add the waves pictorially to visualize wave superposition, noting areas of constructive and destructive interference. (EU 6.D) (SP 1)	
Wavelength		
Amplitude	Given several real world objects and a set of measured data describing each object, students will make density determinations. Students will also articulate the significance	
Interference	of density of each object in real world situations. (EU 1.E)	
Constructive	(SP 4, 6)	
Destructive		
Superposition	Students will see demonstrations of mechanical waves reflecting at a boundary between two mediums with differing densities. Students will diagram the types of reflections seen	
Reflection	compared to the medium densities. Students will be given other scenarios involving mediums with differing densities	
Standing waves	and then will predict how each reflection will behave. (SP 1)	

Syllabus 1066433v1

AP[®] Physics 1 Sample Syllabus 3

Course Sequence	Student Labs and Activities	
Sound specific Resonance Loudness Doppler effect Beats	Lab 17: Using an adjustable wave driver, students will generate standing waves in a string. In the first part of the lab, the medium will remain constant (constant string tension and length) while frequency is varied to identify the fundamental frequency and several harmonics. In the second phase of the lab, the tension will be varied to access the effect on frequency, wavelength, and wave speed of altering the medium. In the third phase, the affect of changing wave amplitude will be explored. Students will quantitatively determine period, frequency, wavelength and wave speed. Students will access the affect on wave energy due to changes in frequency, wavelength, and amplitude. (EU 6.A, 6.B, 6.D) (SP 4, 5)	
	Students will describe how sound moves in a medium and how it transfers energy. Real world examples involving the relationship of energy to frequency, wavelength, and amplitude will be discussed. (EU 6.A, 6.B) (SP 1, 6)	
	Students will diagram the waves associated with the fundamental frequency, 1st harmonic, 2nd harmonic, and 3rd harmonic for a string, an open tube, and a closed tube. The dependence of wavelength on the size of the region, as opposed to the frequency, will be discussed. Students will calculate wavelengths and frequencies associated with each wave form. (EU 6.D) (SP 1, 2, 6)	CR6b— The laboratory work used throughout the course includes guided-inquiry laboratory investigations allowing students to apply all seven science practices.
	set of tuning forks, and a meter stick, design an experiment to determine the speed of sound in air. (EU 6.B, 6.D) (SP 4, 5, 6, 7) [CR6b]	CR2h— The course design provides opportunities for students to develop understanding of the
	Given a series of wave front diagrams, showing sound waves emitted from a moving source, students will determine the direction of motion and qualitatively access the speed of the source compared to the speed of sound in air. (EU 6.B) (SP 1)	foundational principles of electrostatics in the context of the big ideas that organize the curriculum framework.
	Students will superimpose diagrams of two waves having different frequencies. The waves will be added graphically to demonstrate beats. (EU 6.D) (SP 1)	CR2i— The course design provides opportunities for students to develop
	Charge, Current, and Circuits [CR2h] [CR2i]	understanding of the
Big Idea 1: Objects and sy have internal structure.	stems have properties such as mass and charge. Systems may	foundational principles of electric circuits in
	ns of an object with other objects can be described by forces.	the context of the big
Big Idea 5: Changes that conservation laws.	occur as a result of interactions are constrained by	ideas that organize the curriculum framework.

AP® Physics 1 Sample Syllabus 3

Course Sequence	Student Labs and Activities	
Charge	Read 20.1 to 20.3 and 22.1 to 22.6 and 23.1 to 23.9	
Electric field Electric force	Students will identify the atomic particles having the property of charge and list their characteristics, including the charge on an electron, proton, and neutron. (EU 1.B) (SP 6)	
Conductors and insulators Conservation of charge	The statement that charge is conserved and quantized will be analyzed, with students predicting its significance. Given a variety of charged objects/systems, students will characterize each as an object/system depending on given parameters. Students will discuss the meaning of net charge and determine the net charge for each object/system. (EU 1.A, 1.B) (SP 1, 7)	
Charging Conduction Induction		
Current	Students will diagram and compare the uniform electric field between plates with the field surrounding spherical point	
Batteries and EMF	charges. The direction of force on a point charge placed in each field will be diagrammed. Compare and contrast the electric field and force to the gravity field and gravitational	
Resistance	force. Using Coulomb's Law, students will determine the magnitude of force between two point charges. (EU 3.C) (SP	
Ohm's Law	1, 2, 7)	
Power	Various objects will be charged and students will use the principle of conservation of charge to predict the resulting charge and the sign of the charge on each object. (EU 1.B,	
Kirchhoff's Laws	5.A) (SP 6, 7)	
DC resistor circuits	A model of electric current in a simple circuit will be proposed and diagrammed. How emf and resistivity affect current will be modeled. Students will be asked to make analogies to real world systems that have similarities to electric circuits. (EU 1.A) (SP 1)	
	Given a variety of data, students will select data relevant in determining the resistivity of a substance, and will determine and test the resistance in a length wire. (EU 1.E) (SP 2, 4)	
	Lab 19: Ohm's Law. Using a multi-meter, students will explore the relationships between emf, current, and resistance in a simple circuit. The rate that electric energy is consumed by the circuit will also be determined. (EU 5.B) (SP 5, 6)	

Syllabus 1066433v1

AP[®] Physics 1 Sample Syllabus 3

Course Sequence	Student Labs and Activities
	Lab 20: Students construct one series and one parallel circuit involving the same three resistors. Measurements of potential, current, and resistance will be used to deduce Kirchhoff's Laws. The connections to conservation of charge and energy will be stressed. (EU 5.B) (SP 1, 6, 7)
	Lab 21: Students will design their own circuit mixing series and parallel pathways. They will prepare a schematic of the circuit, and use Kirchhoff's laws to predict the current and potential drops across each resistor. Using a multi-meter, students will then confirm their predictions. (EU 5.C) (SP 2, 4, 5, 6)
	Given a variety of circuit schematics, students will be able to determine the current, voltage drops, and power consumption in all components comprising the circuit. (EU 5.C) (SP 1, 2, 5)

In the five-week period between the AP Exam and year-end, the course work will be focused in two primary areas:

1. Continued instruction to prepare students who intend further course work in physics (graduating seniors planning to take physics in college and underclassmen intending to enroll in additional physics courses).

Introduction to electric fields and electric force

Introduction to electric potential and electric potential energy

2. Summary activities

Students are tasked with designing and testing an apparatus or a structure, similar to a Science Olympiad event. Some examples are bridges, catapults, etc. Rules and limitations regarding materials and dimensions are set (L0 1.C.1.1, 3.A.3.3, 3.B.1.2). Students are given the opportunity to test and refine their project. The finished products are then showcased in a competitive, yet friendly setting. **[CR3] [CR4]**

CR3— Students have opportunities to apply AP Physics 1 learning objectives connecting across enduring understandings as described in the curriculum framework. These opportunities must occur in addition to those within laboratory investigations.

CR4— The course provides students with opportunities to apply their knowledge of physics principles to real world questions or scenarios (including societal issues or technological innovations) to help them become scientifically literate citizens.