
2
017

Course and Exam Description

AP
®

 Computer
Science Principles
Including the Curriculum Framework

Updated Fall 2017



AP® Computer Science 
Principles

Course and Exam Description

Updated Fall 2017

apcentral.collegeboard.com

AP COURSE AND EXAM DESCRIPTIONS ARE UPDATED PERIODICALLY.

Please visit AP Central ( ) to determine 
whether a more recent course and exam description PDF is available.

New York, NY

http://apcentral.collegeboard.com


About the College Board
The College Board is a mission-driven not-for-profit organization that connects 
students to college success and opportunity. Founded in 1900, the College Board 
was created to expand access to higher education. Today, the membership 
association is made up of over 6,000 of the world’s leading educational institutions 
and is dedicated to promoting excellence and equity in education. Each year, the 
College Board helps more than seven million students prepare for a successful 
transition to college through programs and services in college readiness and 
college success — including the SAT® and the Advanced Placement Program®. 
The organization also serves the education community through research and 
advocacy on behalf of students, educators, and schools. For further information, 
visit www.collegeboard.org.

AP® Equity and Access Policy
The College Board strongly encourages educators to make equitable access a 
guiding principle for their AP® programs by giving all willing and academically 
prepared students the opportunity to participate in AP. We encourage the 
elimination of barriers that restrict access to AP for students from ethnic, racial, 
and socioeconomic groups that have been traditionally underrepresented. Schools 
should make every effort to ensure their AP classes reflect the diversity of their 
student population. The College Board also believes that all students should have 
access to academically challenging course work before they enroll in AP classes, 
which can prepare them for AP success. It is only through a commitment to 
equitable preparation and access that true equity and excellence can be achieved.

© 2017 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn 
logo are registered trademarks of the College Board. All other products and services may be trademarks of 
their respective owners. Visit the College Board on the Web: www.collegeboard.org.

http://www.collegeboard.org


Contents

Preface

  Acknowledgments

  About AP®

 2 Offering AP Courses and Enrolling Students

 2 How AP Courses and Exams Are Developed

 3 How AP Exams Are Scored

 3 Using and Interpreting AP Scores

 3 Additional Resources

  About the AP Computer Science Principles Course

 4 Prerequisites

 5   Participating in the AP Course Audit

  AP Computer Science Principles Curriculum Framework

 6 Introduction

 6 Overview of the Curriculum Framework

 7 Relationship Between the Curriculum Framework and Assessment

 9 Computational Thinking Practices

 9 P1: Connecting Computing

 9 P2: Creating Computational Artifacts

 9 P3: Abstracting

 9 P4: Analyzing Problems and Artifacts

 10 P5: Communicating

 10 P6: Collaborating

 11 The Concept Outline

 11 Big Idea 1: Creativity 

 14 Big Idea 2: Abstraction

 18 Big Idea 3: Data and Information

 22 Big Idea 4: Algorithms

 26 Big Idea 5: Programming 

 31 Big Idea 6: The Internet

 34 Big Idea 7: Global Impact



  AP Computer Science Principles Instructional Approaches

 38 Planning Your Course

 46 Linking Computational Thinking Practices and Learning Objectives

 63 Linking Course Concepts and Strategies

  AP Computer Science Principles Assessment Overview

 72 Preparing for the Through-Course Performance Tasks

 73 Performance Task: Explore – Impact of Computing Innovations

 79 Performance Task: Create – Applications from Ideas

 84 AP Computer Science Principles End-of-Course Exam

 85 Sample Exam Questions

 103 Answers to Sample Exam Questions

Reproducibles for Students

 105 AP Computer Science Principles Assessment Overview for Students

 105 Investigation and Citation

 106 Programming Language Requirements

 106 Peer-to-Peer Collaboration

 107 Preparing for the Through-Course Performance Tasks

 108 Performance Task: Explore – Impact of Computing Innovations

 111 Preparing for the Explore Performance Task

 112 Guidelines for Completing the Explore Performance Task

 113 Performance Task: Create – Applications from Ideas

 116 Preparing for the Create Performance Task

 116 Guidelines for Completing the Create Performance Task

 118 AP Computer Science Principles Exam Reference Sheet

  Appendix: Changes to the Course and Exam Description

  Contact Us



Preface
AP Computer Science Principles introduces students to the central ideas of 
computer science, instilling the ideas and practices of computational thinking, 
and inviting students to understand how computing changes the world. Students 
develop innovative computational artifacts using the same creative processes 
artists, writers, computer scientists, and engineers use to bring ideas to life.

To appeal to a broader audience, including those often underrepresented in 
computing, this course emphasizes the vital impact advances in computing 
have on people and society. The course goes beyond the study of machines and 
systems and gives students the opportunity to investigate computing innovations 
that span a variety of interests and to examine the ethical implications of these 
new technologies.

In partnership with the National Science Foundation, the AP Program collaborated 
with secondary and postsecondary educators and members of computer science 
educational professional organizations to develop the AP Computer Science 
Principles curriculum framework.

This new AP Computer Science Principles course is complementary to AP Computer 
Science A. Students can take these courses in any order or at the same time, as 
schedules permit. Both courses include rigorous computer science content and 
skills that can be built on to complete further science, technology, engineering, 
mathematics, and computing studies. It is important to note that the AP Computer 
Science Principles course does not have a designated programming language. 
Teachers have the flexibility to choose a programming language(s) that is most 
appropriate for their students to use in the classroom.



Acknowledgments
The College Board would like to acknowledge the following committee members, 
consultants, and reviewers for their assistance with and commitment to the 
development of this curriculum and assessment. All individuals and associated 
affiliations were current at the time of contribution.

Don Allen, Troy High School

Christine Alvarado, University of California, San Diego

Stacey Armstrong, Cypress Woods High School

Owen Astrachan, Duke University

Duane Bailey, Williams College

Tiffany Barnes, University of North Carolina at Charlotte

Charmaine Bentley, Franklin D. Roosevelt High School

Amy Briggs, Middlebury College

Gail Chapman, Computer Science Teachers Association

Tom Cortina, Carnegie Mellon University

Stephen Edwards, Virginia Tech

Dan Garcia, University of California, Berkeley*

Christina Gardner-McCune, University of Florida*

Joanna Goode, University of Oregon

Mark Guzdial, Georgia Tech

Susanne Hambrusch, Purdue University

Michelle Hutton, Computer Science Teachers Association

Rich Kick, Newbury Park High School*

Andrew Kuemmel, Madison West High School*

Deepak Kumar, Bryn Mawr College

James Kurose, University of Massachusetts Amherst

Andrea Lawrence, Spelman College

Deepa Muralidhar, North Gwinnett High School*

Richard Pattis, University of California, Irvine

Jody Paul, Metropolitan State University of Denver

Dale Reed, University of Illinois at Chicago*

Eric Roberts, Stanford University

Katie Siek, University of Colorado Boulder

Beth Simon, University of California, San Diego



Acknowledgments

Larry Snyder, University of Washington

Lynn Andrea Stein, Olin College

Chris Stephenson, Computer Science Teachers Association

Fran Trees, Rutgers University*

Cameron Wilson, Association for Computing Machinery

Special thanks to the National Science Foundation for its support of AP Computer 
Science Principles (GN0938336).

AP Curriculum and Content Development

Lien Diaz, Senior Director, AP Curriculum, Instruction, and Assessment

AP Instructional Design and Professional Development

Crystal Furman, Director, AP Curriculum, Instruction, and Assessment

*Members of the original Development Committee are marked with an asterisk (*).



Return to  
Table of Contents

© 2017 The College Board

1AP Computer Science Principles Course and Exam Description

About AP

About AP®

The College Board’s Advanced Placement Program® (AP®) enables students to 
pursue college-level studies while still in high school. Through more than 30 
courses, each culminating in a rigorous exam, AP provides willing and academically 
prepared students with the opportunity to earn college credit and/or advanced 
placement. Taking AP courses also demonstrates to college admission officers that 
students have sought out the most rigorous course work available to them.

Each AP course is modeled upon a comparable college course, and college 
and university faculty play a vital role in ensuring that AP courses align with 
college-level standards. Talented and dedicated AP teachers help AP students in 
classrooms around the world develop and apply the content knowledge and skills 
they will need later in college.

Each AP course concludes with a college-level assessment developed and scored by 
college and university faculty, as well as experienced AP teachers. AP Exams are an 
essential part of the AP experience, enabling students to demonstrate their mastery 
of college-level course work. Most four-year colleges and universities in the United 
States and universities in more than 60 countries recognize AP in the admission 
process and grant students credit, placement, or both on the basis of successful 
AP Exam scores. Visit www.collegeboard.org/apcreditpolicy to view AP credit and 
placement policies at more than 1,000 colleges and universities.

Performing well on an AP Exam means more than just the successful completion 
of a course; it is a gateway to success in college. Research consistently 
shows that students who receive a score of 3 or higher on AP Exams typically 
experience greater academic success in college and have higher graduation 
rates than their non-AP peers.1 Additional AP studies are available at 
www.collegeboard.org/research.

1 See the following research studies for more details:

 Linda Hargrove, Donn Godin, and Barbara Dodd, College Outcomes Comparisons by AP and Non-AP 
High School Experiences (New York: The College Board, 2008).

 Chrys Dougherty, Lynn Mellor, and Shuling Jian, The Relationship Between Advanced Placement and 
College Graduation (Austin, Texas: National Center for Educational Accountability, 2006).



2
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

About AP

Offering AP Courses and Enrolling Students
This AP Course and Exam Description details the essential information required 
to understand the objectives and expectations of an AP course. The AP Program 
unequivocally supports the principle that each school implements its own curriculum 
that will enable students to develop the content knowledge and skills described here.

Schools wishing to offer AP courses must participate in the AP Course Audit, a 
process through which AP teachers’ syllabi are reviewed by college faculty. The 
AP Course Audit was created at the request of College Board members who 
sought a means for the College Board to provide teachers and administrators 
with clear guidelines on curricular and resource requirements for AP courses 
and to help colleges and universities validate courses marked “AP” on students’ 
transcripts. This process ensures that AP teachers’ syllabi meet or exceed the 
curricular and resource expectations that college and secondary school faculty have 
established for college-level courses. For more information on the AP Course Audit, 
visit www.collegeboard.org/apcourseaudit.

The College Board strongly encourages educators to make equitable access a 
guiding principle for their AP programs by giving all willing and academically 
prepared students the opportunity to participate in AP. We encourage the 
elimination of barriers that restrict access to AP for students from ethnic, racial, 
and socioeconomic groups that have been traditionally underrepresented. Schools 
should make every effort to ensure their AP classes reflect the diversity of their 
student population. The College Board also believes that all students should have 
access to academically challenging course work before they enroll in AP classes, 
which can prepare them for AP success. It is only through a commitment to 
equitable preparation and access that true equity and excellence can be achieved.

How AP Courses and Exams Are Developed
AP courses and exams are designed by committees of college faculty and expert 
AP teachers who ensure that each AP subject reflects and assesses college-level 
expectations. To find a list of each subject’s current AP Development Committee 
members, please visit apcentral.collegeboard.com/apc/public/courses/228674.html. 
AP Development Committees define the scope and expectations of the course, 
articulating through a curriculum framework what students should know and 
be able to do upon completion of the AP course. Their work is informed by data 
collected from a range of colleges and universities to ensure that AP coursework 
reflects current scholarship and advances in the discipline.

The AP Development Committees are also responsible for drawing clear and well-
articulated connections between the AP course and AP Exam — work that includes 
designing and approving exam specifications and exam questions. The AP Exam 
development process is a multiyear endeavor; all AP Exams undergo extensive 
review, revision, piloting, and analysis to ensure that questions are high quality and 
fair and that there is an appropriate spread of difficulty across the questions.

Throughout AP course and exam development, the College Board gathers feedback 
from various stakeholders in both secondary schools and higher education institutions. 
This feedback is carefully considered to ensure that AP courses and exams are able 
to provide students with a college-level learning experience and the opportunity to 
demonstrate their qualifications for advanced placement upon college entrance.

http://apcentral.collegeboard.com/apc/public/courses/228674.html


Return to  
Table of Contents

© 2017 The College Board

3AP Computer Science Principles Course and Exam Description

About AP

How AP Exams Are Scored
The exam scoring process, like the course and exam development process, relies on 
the expertise of both AP teachers and college faculty. While multiple-choice questions 
on the end-of-course exam are scored by machine, the through-course performance 
tasks are scored by college faculty and expert AP teachers at the annual AP Reading. 
AP Exam Readers are thoroughly trained, and their work is monitored throughout the 
Reading for fairness and consistency. In each subject, a highly respected college faculty 
member fills the role of Chief Reader, who, with the help of AP Readers in leadership 
positions, maintains the accuracy of the scoring standards. Scores on the through-
course performance tasks are weighted and combined with the weighted results of the 
computer-scored multiple-choice questions on the end-of-course assessment and this 
composite score is converted into an AP Exam score of 5, 4, 3, 2, or 1.

The score-setting process is both precise and labor intensive, involving numerous 
psychometric analyses of the results of a specific AP Exam in a specific year and of the 
particular group of students who took that exam. Additionally, to ensure alignment 
with college-level standards, part of the score-setting process involves comparing the 
performance of AP students with the performance of students enrolled in comparable 
courses in colleges throughout the United States. In general, the AP composite 
score points are set so that the lowest raw score needed to earn an AP score of 5 is 
equivalent to the average score among college students earning grades of A in the 
college course. Similarly, AP Exam scores of 4 are equivalent to college grades of A, 
B1, and B. AP Exam scores of 3 are equivalent to college grades of B, C1, and C.

Using and Interpreting AP Scores
College faculty are involved in every aspect of AP, from course and exam development 
to scoring and standards alignment. These faculty members ensure that the courses 
and exams meet colleges’ expectations for content taught in comparable college 
courses. Based on outcomes research and program evaluation, the American Council 
on Education (ACE) and the Advanced Placement Program recommend that colleges 
grant credit and/or placement to students with AP Exam scores of 3 and higher. The 
AP score of 3 is equivalent to grades of B, C1, and C in the equivalent college course. 
However, colleges and universities set their own AP credit, advanced standing, and 
course placement policies based on their unique needs and objectives.

AP Score Recommendation

5 Extremely well qualified

4 Well qualified

3 Qualified

2 Possibly qualified

1 No recommendation

Additional Resources
Visit apcentral.collegeboard.org for more information about the AP Program.

http://apcentral.collegeboard.org


4
Return to  

Table of Contents

© 2017 The College Board

About the AP Computer Science Principles Course

AP Computer Science Principles Course and Exam Description

About the AP Computer Science 
Principles Course
The AP Computer Science Principles course is designed to be equivalent to a first-
semester introductory college computing course. In this course, students will 
develop computational thinking skills vital for success across all disciplines, such 
as using computational tools to analyze and study data and working with large 
data sets to analyze, visualize, and draw conclusions from trends. The course 
engages students in the creative aspects of the field by allowing them to develop 
computational artifacts based on their interests. Students will also develop effective 
communication and collaboration skills by working individually and collaboratively 
to solve problems, and will discuss and write about the impacts these solutions 
could have on their community, society, and the world.

Prerequisites
It is recommended that a student in the AP Computer Science Principles course 
should have successfully completed a first-year high school algebra course with 
a strong foundation in basic linear functions and composition of functions, and 
problem-solving strategies that require multiple approaches and collaborative 
efforts. In addition, students should be able to use a Cartesian (x, y) coordinate 
system to represent points in a plane. It is important that students and their 
advisers understand that any significant computer science course builds on a 
foundation of mathematical and computational reasoning that will be applied 
throughout the study of the course.



Return to  
Table of Contents

© 2017 The College Board

5

Participating in the AP Course Audit

AP Computer Science Principles Course and Exam Description

Participating in the AP Course Audit
Schools wishing to offer AP courses must participate in the AP Course Audit. 
Participation in the AP Course Audit requires the online submission of two 
documents: the AP Course Audit form and the teacher’s syllabus. The AP Course 
Audit form is submitted by the AP teacher and the school principal (or designated 
administrator) to confirm awareness and understanding of the curricular and 
resource requirements. The syllabus, detailing how requirements are met, is 
submitted by the AP teacher for review by college faculty.

Please visit http://www.collegeboard.com/html/apcourseaudit/teacher.html 
for the Curricular and Resource Requirements that identify the set of curricular 
and resource expectations that college faculty nationwide have established for 
a college-level course, as well as for more information and materials to support 
syllabus development, including:

 ▶ Annotated Sample Syllabi — Provide examples of how the curricular requirements 
can be demonstrated within the context of actual syllabi.

▶ Example Textbook List — Includes a sample of AP college-level textbooks that 
meet the content requirements of the AP course.

 ▶ Syllabus Development Guide — Includes the guidelines reviewers use to evaluate 
syllabi along with three samples of evidence for each requirement. This guide also 
specifies the level of detail required in the syllabus to receive course authorization.

 ▶ Syllabus Development Tutorial — Describes the resources available to support 
syllabus development and walks through the syllabus development guide 
requirement by requirement. 



6
Return to  

Table of Contents

© 2017 The College Board

Introduction

AP Computer Science Principles Course and Exam Description

AP Computer Science Principles 
Curriculum Framework

Introduction
The AP Computer Science Principles curriculum framework specifies the course 
curriculum — the concepts and computational thinking practices central to the 
discipline of computer science — and is organized around the investigation of seven 
big ideas, all of which are fundamental principles essential to thrive in future college 
courses and a variety of computing and STEM careers. Emphasizing these key big 
ideas helps students build a solid understanding and facility with computing and 
computational thinking. These integral understandings can be applied in further 
studies of computer science and provide a pathway for becoming a well-educated and 
informed citizen who understands how computer science impacts people and society.

Overview of the Curriculum Framework
Based on the Understanding by Design® (Wiggins and McTighe) model, the AP 
Computer Science Principles curriculum framework provides a clear and detailed 
description of the course requirements necessary for student success. The course is 
designed to be equivalent to a first-semester introductory college computing course. 
The key sections of this framework are described in the following text.

 ▶ The computational thinking practices capture important aspects of the work that 
computer scientists engage in at the level of competence expected of AP Computer 
Science Principles students. The computational thinking practices help students 
coordinate and make sense of knowledge to accomplish a goal or task. They enable 
students to engage with the course content by developing computational artifacts 
and analyzing data, information, or knowledge represented for computational 
use. In addition, the computational thinking practices require students to learn 
to collaborate to build computational artifacts and communicate their purpose. 
Because the AP Computer Science Principles content and the computational 
thinking practices are equally important, each learning objective directly correlates 
to a computational thinking practice. This correlation to a computational thinking 
practice is denoted at the end of a learning objective. For example, [P1] represents a 
correlation to Computational Thinking Practice 1: Connecting Computing.

 ▶ The major areas of study in the course are organized around seven big ideas, which 
encompass ideas foundational to studying computer science. These big ideas 
connect students to a curriculum scope that includes the art of programming but is 
not programming-centric. A set of essential questions are included under each big 
idea. These questions are large in scope and are provided to help students consider 
connections to the content of the big ideas. They highlight what is needed for 
learning the core content in each big idea. Additionally, each of the big ideas contain 
enduring understandings, which specify core concepts that students should retain 
from their learning experiences.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

7AP Computer Science Principles Course and Exam Description

Introduction
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

▶ Each enduring understanding (EU) is aligned with one or more learning objectives 
that provide a detailed articulation of what students are expected to be able to 
do by the end of the course. The learning objectives integrate a computational 
thinking practice or skill with specific content and provide clear information about 
how students will be expected to demonstrate their knowledge and abilities. 
They are numbered to correspond with the big ideas and enduring understandings 
(e.g., LO 7.2.1 is from Big Idea 7, Enduring Understanding 7.2, and it is the first 
learning objective in that section). The learning objectives will be the target of 
assessment on the AP Computer Science Principles through-course performance 
tasks and AP End-Of-Course Exam.

 ▶ Next to each learning objective (LO) is a listing of essential knowledge statements. 
These statements specify facts or content that students must know in order to be 
able to successfully demonstrate understanding of the learning objectives. These 
essential knowledge (EK) statements are listed numerically in the column next to 
the correlated learning objective, and each one includes one or more statements 
describing further content details. All examples and content references are 
considered to be required and may be the focus of exam questions. For example, the
following essential knowledge statements correspond to Learning Objective 1.1.1, 
Apply a creative development process when creating computational artifacts. [P2]:

 

 › 1.1.1A A creative process in the development of a computational artifact 
could include, but is not limited to, employing nontraditional, nonprescribed 
techniques; the use of novel combinations of artifacts, tools, and techniques; 
and the exploration of personal curiosities.

 › 1.1.1B Creating computational artifacts employs an iterative and often 
exploratory process to translate ideas into tangible form.

 ▶ Exclusion statements are included in various locations of the framework. These 
statements provide further clarity about the scope of a particular learning 
objective or essential knowledge statement. They specify content that will not be 
assessed on the exam because it is outside the scope of the course. For example, 
the following exclusion statement applies to Learning Objective 4.2.1:

› Exclusion Statement (for LO 4.2.1): Any discussion of nondeterministic 
polynomial (NP) is beyond the scope of this course and the AP Exam.

Relationship Between the Curriculum 
Framework and Assessment
The learning objectives (including the essential knowledge statements and 
computational thinking practices) will be the targets of assessment for the AP 
Computer Science Principles course. This assessment comprises two parts: the end-
of-course AP Exam and the through-course performance tasks.

The AP Computer Science Principles End-of-Course Exam will be a multiple-
choice, paper and pencil exam in which students will demonstrate achievement of 
the course learning objectives. 

The two through-course performance tasks require students to explore the 
impacts of computing and create computational artifacts digitally and through 
programming. Like the AP Exam, the performance tasks are designed to gather 



8
Return to  

Table of Contents

© 2017 The College Board

Introduction

AP Computer Science Principles Course and Exam Description

evidence of student learning with regard to the learning objectives. Performance 
tasks assess student achievement in more robust ways than are available on a 
timed exam. Additionally, there are learning objectives that are more effectively 
measured in an authentic, real-world performance task.

On both the AP Computer Science Principles End-of-Course Exam and the through-
course performance tasks, students will be asked to apply their understanding of 
the course learning objectives, including the essential knowledge statements and 
computational thinking practices.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

9AP Computer Science Principles Course and Exam Description

Computational Thinking Practices
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Computational Thinking Practices

P1: Connecting Computing
Developments in computing have far-reaching effects on society and have led 
to significant innovations. The developments have implications for individuals, 
society, commercial markets, and innovation. Students in this course study these 
effects, and they learn to draw connections between different computing concepts. 
Students are expected to:

 ▶ Identify impacts of computing.

 ▶ Describe connections between people and computing.

 ▶ Explain connections between computing concepts.

P2: Creating Computational Artifacts
Computing is a creative discipline in which creation takes many forms, such as 
remixing digital music, generating animations, developing websites, and writing 
programs. Students in this course engage in the creative aspects of computing by 
designing and developing interesting computational artifacts as well as by applying 
computing techniques to creatively solve problems. Students are expected to:

 ▶ Create a computational artifact with a practical, personal, or societal intent.

 ▶ Select appropriate techniques to develop a computational artifact.

 ▶ Use appropriate algorithmic and information management principles.

P3: Abstracting
Computational thinking requires understanding and applying abstraction at multiple 
levels, such as privacy in social networking applications, logic gates and bits, and the 
human genome project. Students in this course use abstraction to develop models 
and simulations of natural and artificial phenomena, use them to make predictions 
about the world, and analyze their efficacy and validity. Students are expected to:

 ▶ Explain how data, information, or knowledge is represented for computational use.

 ▶ Explain how abstractions are used in computation or modeling.

 ▶ Identify abstractions.

▶ Describe modeling in a computational context.

P4: Analyzing Problems and Artifacts
The results and artifacts of computation and the computational techniques and 
strategies that generate them can be understood intrinsically both for what they 
are as well as for what they produce. They can also be analyzed and evaluated by 
applying aesthetic, mathematical, pragmatic, and other criteria. Students in this 



10
Return to  

Table of Contents

© 2017 The College Board

Computational Thinking Practices

AP Computer Science Principles Course and Exam Description

course design and produce solutions, models, and artifacts, and they evaluate and 
analyze their own computational work as well as the computational work others 
have produced. Students are expected to:

 ▶ Evaluate a proposed solution to a problem.

 ▶ Locate and correct errors.

▶ Explain how an artifact functions.

 ▶ Justify appropriateness and correctness of a solution, model, or artifact.

P5: Communicating
Students in this course describe computation and the impact of technology 
and computation, explain and justify the design and appropriateness of their 
computational choices, and analyze and describe both computational artifacts and 
the results or behaviors of such artifacts. Communication includes written and 
oral descriptions supported by graphs, visualizations, and computational analysis. 
Students are expected to:

 ▶ Explain the meaning of a result in context.

▶ Describe computation with accurate and precise language, notations, or 
visualizations.

▶ Summarize the purpose of a computational artifact.

P6: Collaborating
Innovation can occur when people work together or independently. People working 
collaboratively can often achieve more than individuals working alone. Learning 
to collaborate effectively includes drawing on diverse perspectives, skills, and the 
backgrounds of peers to address complex and open-ended problems. Students 
in this course collaborate on a number of activities, including the investigation of 
questions using data sets and the production of computational artifacts. Students 
are expected to:

 ▶ Collaborate with another student in solving a computational problem.

 ▶ Collaborate with another student in producing an artifact.

▶ Share the workload by providing individual contributions to an overall collaborative 
effort.

▶ Foster a constructive, collaborative climate by resolving conflicts and facilitating the 
contributions of a partner or team member.

 ▶ Exchange knowledge and feedback with a partner or team member.

 ▶ Review and revise their work as needed to create a high-quality artifact.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

11AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 1
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

The Concept Outline

Big Idea 1: Creativity
Computing is a creative activity. Creativity and computing are prominent forces 
in innovation; the innovations enabled by computing have had and will continue 
to have far-reaching impact. At the same time, computing facilitates exploration 
and the creation of computational artifacts and new knowledge that help people 
solve personal, societal, and global problems. This course emphasizes the creative 
aspects of computing. Students in this course use the tools and techniques of 
computer science to create interesting and relevant artifacts with characteristics 
that are enhanced by computation.

Essential Questions:

▶ How can a creative development process affect the creation of computational artifacts?

 ▶ How can computing and the use of computational tools foster creative expression?

▶ How can computing extend traditional forms of human expression and experience?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 1.1 Creative 
development can 
be an essential 
process for creating 
computational 
artifacts.

lO 1.1.1 Apply 
a creative 
development process 
when creating 
computational 
artifacts. [P2]

Ek 1.1.1A A creative process in the development of a 
computational artifact can include, but is not limited to, 
employing nontraditional, nonprescribed techniques; 
the use of novel combinations of artifacts, tools, and 
techniques; and the exploration of personal curiosities.

Ek 1.1.1B Creating computational artifacts employs an 
iterative and often exploratory process to translate ideas 
into tangible form.

EU 1.2 Computing 
enables people to use 
creative development 
processes to create 
computational 
artifacts for creative 
expression or to 
solve a problem.

lO 1.2.1 Create 
a computational 
artifact for creative 
expression. [P2]

Ek 1.2.1A A computational artifact is something created by 
a human using a computer and can be, but is not limited to, 
a program, an image, an audio, a video, a presentation, or a 
Web page file.

Ek 1.2.1B Creating computational artifacts requires 
understanding of and use of software tools and services.



12
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 1

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 1.2 Computing 
enables people to use 
creative development 
processes to create 
computational 
artifacts for creative 
expression or to 
solve a problem.

(continued)

lO 1.2.1 Create 
a computational 
artifact for creative 
expression. [P2]

(continued)

Ek 1.2.1C Computing tools and techniques are used to 
create computational artifacts and can include, but are 
not limited to, programming integrated development 
environments (IDEs), spreadsheets, three-dimensional (3-D) 
printers, or text editors.

Ek 1.2.1D A creatively developed computational artifact 
can be created by using nontraditional, nonprescribed 
computing techniques.

Ek 1.2.1E Creative expressions in a computational artifact 
can reflect personal expressions of ideas or interests.

lO 1.2.2 Create 
a computational 
artifact using 
computing tools and 
techniques to solve 
a problem. [P2]

Ek 1.2.2A Computing tools and techniques can enhance the 
process of finding a solution to a problem.

Ek 1.2.2B A creative development process for creating 
computational artifacts can be used to solve problems when 
traditional or prescribed computing techniques are not 
effective.

lO 1.2.3 Create a 
new computational 
artifact by combining 
or modifying existing 
artifacts. [P2]

Ek 1.2.3A Creating computational artifacts can be done by 
combining and modifying existing artifacts or by creating 
new artifacts.

Ek 1.2.3B Computation facilitates the creation and 
modification of computational artifacts with enhanced detail 
and precision.

Ek 1.2.3C Combining or modifying existing artifacts can 
show personal expression of ideas.

lO 1.2.4 Collaborate 
in the creation of 
computational 
artifacts. [P6]

Ek 1.2.4A A collaboratively created computational artifact 
reflects effort by more than one person.

Ek 1.2.4B Effective collaborative teams consider the use of 
online collaborative tools.

Ek 1.2.4C Effective collaborative teams practice 
interpersonal communication, consensus building, conflict 
resolution, and negotiation.

Ek 1.2.4D Effective collaboration strategies enhance 
performance.

Ek 1.2.4E Collaboration facilitates the application of multiple 
perspectives (including sociocultural perspectives) and 
diverse talents and skills in developing computational 
artifacts.

Ek 1.2.4F A collaboratively created computational artifact 
can reflect personal expressions of ideas.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

13AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 1
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 1.2 Computing 
enables people to use 
creative development 
processes to create 
computational 
artifacts for creative 
expression or to 
solve a problem.

(continued)

lO 1.2.5 Analyze the 
correctness, usability, 
functionality, 
and suitability of 
computational 
artifacts. [P4]

Ek 1.2.5A The context in which an artifact is used 
determines the correctness, usability, functionality, and 
suitability of the artifact.

Ek 1.2.5B A computational artifact may have weaknesses, 
mistakes, or errors depending on the type of artifact.

Ek 1.2.5C The functionality of a computational artifact may 
be related to how it is used or perceived.

Ek 1.2.5D The suitability (or appropriateness) of a 
computational artifact may be related to how it is used or 
perceived.

EU 1.3 Computing 
can extend traditional 
forms of human 
expression and 
experience.

lO 1.3.1 Use 
computing tools 
and techniques 
for creative 
expression. [P2]

Ek 1.3.1A Creating digital effects, images, audio, video, and 
animations has transformed industries.

Ek 1.3.1B Digital audio and music can be created by 
synthesizing sounds, sampling existing audio and music, 
and recording and manipulating sounds, including layering 
and looping.

Ek 1.3.1C Digital images can be created by generating 
pixel patterns, manipulating existing digital images, or 
combining images.

Ek 1.3.1D Digital effects and animations can be created by 
using existing software or modified software that includes 
functionality to implement the effects and animations.

Ek 1.3.1E Computing enables creative exploration of both 
real and virtual phenomena.



14
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 2

Big Idea 2: Abstraction
Abstraction reduces information and detail to facilitate focus on relevant 
concepts. Everyone uses abstraction on a daily basis to effectively manage 
complexity. In computer science, abstraction is a central problem-solving technique. 
It is a process, a strategy, and the result of reducing detail to focus on concepts 
relevant to understanding and solving problems. This course requires students to 
use abstractions to model the world and communicate with people as well as with 
machines. Students in this course learn to work with multiple levels of abstraction 
while engaging with computational problems and systems; use models and 
simulations that simplify complex topics in graphical, textual, and tabular formats; 
and use snapshots of models and simulation outputs to understand how data 
changes, identify patterns, and recognize abstractions.

Essential Questions:

 ▶ How are vastly different kinds of data, physical phenomena, and mathematical 
concepts represented on a computer?

▶ How does abstraction help us in writing programs, creating computational artifacts, 
and solving problems?

▶ How can computational models and simulations help generate new understanding 
and knowledge?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 2.1 A variety of 
abstractions built on 
binary sequences can 
be used to represent 
all digital data.

lO 2.1.1 Describe 
the variety of 
abstractions used to 
represent data. [P3]

Ek 2.1.1A Digital data is represented by abstractions at 
different levels.

Ek 2.1.1B At the lowest level, all digital data are represented 
by bits.

Ek 2.1.1C At a higher level, bits are grouped to represent 
abstractions, including but not limited to numbers, 
characters, and color.

Ek 2.1.1D Number bases, including binary, decimal, and 
hexadecimal, are used to represent and investigate digital 
data.

Ek 2.1.1E At one of the lowest levels of abstraction, 
digital data is represented in binary (base 2) using only 
combinations of the digits zero and one.

EXClUSION STATEmENT (for Ek 2.1.1E): Two’s complement 
conversions are beyond the scope of this course and the AP 
Exam.

Ek 2.1.1F Hexadecimal (base 16) is used to represent digital 
data because hexadecimal representation uses fewer digits 
than binary.

Ek 2.1.1G Numbers can be converted from any base to any 
other base.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

15AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 2
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 2.1 A variety of 
abstractions built on 
binary sequences can 
be used to represent 
all digital data.

(continued)

lO 2.1.2 Explain how 
binary sequences 
are used to 
represent digital 
data. [P5]

Ek 2.1.2A A finite representation is used to model the 
infinite mathematical concept of a number.

EXClUSION STATEmENT (for Ek 2.1.2A): Binary 
representations of scientific notation are beyond the scope 
of this course and the AP Exam.

Ek 2.1.2B In many programming languages, the fixed 
number of bits used to represent characters or integers 
limits the range of integer values and mathematical 
operations; this limitation can result in overflow or other 
errors.

EXClUSION STATEmENT (for Ek 2.1.2B): Range limitations 
of any one language, compiler, or architecture are beyond 
the scope of this course and the AP Exam.

Ek 2.1.2C In many programming languages, the fixed 
number of bits used to represent real numbers (as floating-
point numbers) limits the range of floating-point values 
and mathematical operations; this limitation can result in 
round-off and other errors.

Ek 2.1.2D The interpretation of a binary sequence depends 
on how it is used.

Ek 2.1.2E A sequence of bits may represent instructions or 
data.

Ek 2.1.2F A sequence of bits may represent different types 
of data in different contexts.

EU 2.2 Multiple 
levels of abstraction 
are used to write 
programs or create 
other computational 
artifacts.

lO 2.2.1 Develop an 
abstraction when 
writing a program 
or creating other 
computational 
artifacts. [P2]

Ek 2.2.1A The process of developing an abstraction involves 
removing detail and generalizing functionality.

Ek 2.2.1B An abstraction extracts common features from 
specific examples in order to generalize concepts.

Ek 2.2.1C An abstraction generalizes functionality with input 
parameters that allow software reuse.

EXClUSION STATEmENT (for Ek 2.2.1C): An understanding 
of the difference between value and reference parameters is 
beyond the scope of this course and the AP Exam.

lO 2.2.2 Use 
multiple levels of 
abstraction to write 
programs. [P3]

Ek 2.2.2A Software is developed using multiple levels of 
abstractions, such as constants, expressions, statements, 
procedures, and libraries.

Ek 2.2.2B Being aware of and using multiple levels of 
abstractions in developing programs help to more effectively 
apply available resources and tools to solve problems.



16
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 2

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 2.2 Multiple 
levels of abstraction 
are used to write 
programs or create 
other computational 
artifacts.

(continued)

lO 2.2.3 Identify 
multiple levels of 
abstractions that 
are used when 
writing programs. 
[P3]

Ek 2.2.3A Different programming languages offer different 
levels of abstraction.

EXClUSION STATEmENT (for Ek 2.2.3A): Knowledge of 
the abstraction capabilities of all programming languages 
is beyond the scope of this course and the AP Exam.

Ek 2.2.3B High-level programming languages provide more 
abstractions for the programmer and make it easier for 
people to read and write a program.

Ek 2.2.3C Code in a programming language is often 
translated into code in another (lower-level) language to be 
executed on a computer.

Ek 2.2.3D In an abstraction hierarchy, higher levels of 
abstraction (the most general concepts) would be placed 
toward the top and lower-level abstractions (the more 
specific concepts) toward the bottom.

Ek 2.2.3E Binary data is processed by physical layers 
of computing hardware, including gates, chips, and 
components.

Ek 2.2.3F A logic gate is a hardware abstraction that is 
modeled by a Boolean function.

EXClUSION STATEmENT (for Ek 2.2.3F): Memorization of 
specific gate visual representations is beyond the scope of this 
course and the AP Exam.

Ek 2.2.3G A chip is an abstraction composed of low-level 
components and circuits that perform a specific function.

Ek 2.2.3H A hardware component can be low level like a 
transistor or high level like a video card.

Ek 2.2.3I Hardware is built using multiple levels of 
abstractions, such as transistors, logic gates, chips, memory, 
motherboards, special purpose cards, and storage devices.

Ek 2.2.3J Applications and systems are designed, 
developed, and analyzed using levels of hardware, software, 
and conceptual abstractions.

Ek 2.2.3k Lower-level abstractions can be combined to 
make higher-level abstractions, such as short message 
services (SMS) or email messages, images, audio files, and 
videos.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

17AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 2
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 2.3 Models 
and simulations 
use abstraction 
to generate new 
understanding 
and knowledge.

lO 2.3.1 Use models 
and simulations 
to represent 
phenomena. [P3]

Ek 2.3.1A Models and simulations are simplified 
representations of more complex objects or phenomena.

Ek 2.3.1B Models may use different abstractions or levels of 
abstraction depending on the objects or phenomena being 
posed.

Ek 2.3.1C Models often omit unnecessary features of the 
objects or phenomena that are being modeled.

Ek 2.3.1D Simulations mimic real-world events without the 
cost or danger of building and testing the phenomena in the 
real world.

lO 2.3.2 Use models 
and simulations to 
formulate, refine, and 
test hypotheses. [P3]

Ek 2.3.2A Models and simulations facilitate the formulation 
and refinement of hypotheses related to the objects or 
phenomena under consideration.

Ek 2.3.2B Hypotheses are formulated to explain the objects 
or phenomena being modeled.

Ek 2.3.2C Hypotheses are refined by examining the insights 
that models and simulations provide into the objects or 
phenomena.

Ek 2.3.2D The results of simulations may generate new 
knowledge and new hypotheses related to the phenomena 
being modeled.

Ek 2.3.2E Simulations allow hypotheses to be tested 
without the constraints of the real world.

Ek 2.3.2F Simulations can facilitate extensive and rapid 
testing of models.

Ek 2.3.2G The time required for simulations is impacted 
by the level of detail and quality of the models and the 
software and hardware used for the simulation.

Ek 2.3.2H Rapid and extensive testing allows models to be 
changed to accurately reflect the objects or phenomena 
being modeled.



18
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 3

Big Idea 3: Data and Information
Data and information facilitate the creation of knowledge. Computing enables 
and empowers new methods of information processing, driving monumental 
change across many disciplines — from art to business to science. Managing 
and interpreting an overwhelming amount of raw data is part of the foundation 
of our information society and economy. People use computers and computation 
to translate, process, and visualize raw data and to create information. 
Computation and computer science facilitate and enable new understanding of 
data and information that contributes knowledge to the world. Students in this 
course work with data using a variety of computational tools and techniques to 
better understand the many ways in which data is transformed into information 
and knowledge.

Essential Questions:

 ▶ How can computation be employed to help people process data and information to 
gain insight and knowledge?

 ▶ How can computation be employed to facilitate exploration and discovery when 
working with data?

 ▶ What considerations and trade-offs arise in the computational manipulation of data?

 ▶ What opportunities do large data sets provide for solving problems and creating 
knowledge?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 3.1 People 
use computer 
programs to process 
information to 
gain insight and 
knowledge.

lO 3.1.1 Find 
patterns and test 
hypotheses about 
digitally processed 
information to 
gain insight and 
knowledge. [P4]

Ek 3.1.1A Computers are used in an iterative and interactive 
way when processing digital information to gain insight 
and knowledge.

Ek 3.1.1B Digital information can be filtered and cleaned by 
using computers to process information.

Ek 3.1.1C Combining data sources, clustering data, and data  
classification are part of the process of using computers to  
process information.

Ek 3.1.1D Insight and knowledge can be obtained from 
translating and transforming digitally represented information.

Ek 3.1.1E Patterns can emerge when data is transformed  
using computational tools.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

19AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 3
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 3.1 People 
use computer 
programs to process 
information to 
gain insight and 
knowledge.

(continued)

lO 3.1.2 Collaborate 
when processing 
information to 
gain insight and 
knowledge. [P6]

Ek 3.1.2A Collaboration is an important part of solving data-
driven problems.

Ek 3.1.2B Collaboration facilitates solving computational 
problems by applying multiple perspectives, experiences, 
and skill sets.

Ek 3.1.2C Communication between participants working on 
data-driven problems gives rise to enhanced insights and 
knowledge.

Ek 3.1.2D Collaboration in developing hypotheses and 
questions, and in testing hypotheses and answering 
questions, about data helps participants gain insight and 
knowledge.

Ek 3.1.2E Collaborating face-to-face and using online 
collaborative tools can facilitate processing information to 
gain insight and knowledge.

Ek 3.1.2F Investigating large data sets collaboratively can 
lead to insight and knowledge not obtained when working 
alone.

lO 3.1.3 Explain 
the insight and 
knowledge gained 
from digitally 
processed data by 
using appropriate 
visualizations, 
notations, and precise 
language. [P5]

Ek 3.1.3A Visualization tools and software can communicate 
information about data.

Ek 3.1.3B Tables, diagrams, and textual displays can be used 
in communicating insight and knowledge gained from data.

Ek 3.1.3C Summaries of data analyzed computationally 
can be effective in communicating insight and knowledge 
gained from digitally represented information.

Ek 3.1.3D Transforming information can be effective in 
communicating knowledge gained from data.

Ek 3.1.3E Interactivity with data is an aspect of 
communicating.

EU 3.2 Computing 
facilitates exploration
and the discovery 
of connections in 
information.

 
lO 3.2.1 Extract 
information from 
data to discover and 
explain connections 
or trends. [P1]

Ek 3.2.1A Large data sets provide opportunities and 
challenges for extracting information and knowledge.

Ek 3.2.1B Large data sets provide opportunities for 
identifying trends, making connections in data, and solving 
problems.

Ek 3.2.1C Computing tools facilitate the discovery of 
connections in information within large data sets.

Ek 3.2.1D Search tools are essential for efficiently finding 
information.



20
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 3

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 3.2 Computing 
facilitates exploration 
and the discovery 
of connections in 
information.

(continued)

lO 3.2.1 Extract 
information from 
data to discover and 
explain connections 
or trends. [P1]

(continued)

Ek 3.2.1E Information filtering systems are important tools 
for finding information and recognizing patterns in the 
information.

Ek 3.2.1F Software tools, including spreadsheets and 
databases, help to efficiently organize and find trends in 
information.

EXClUSION STATEmENT (for Ek 3.2.1F): Students are not 
expected to know specific formulas or options available in 
spreadsheet or database software packages.

Ek 3.2.1G Metadata is data about data.

Ek 3.2.1H Metadata can be descriptive data about an image, 
a Web page, or other complex objects.

Ek 3.2.1I Metadata can increase the effective use of data or 
data sets by providing additional information about various 
aspects of that data.

lO 3.2.2 Determine 
how large data 
sets impact the use 
of computational 
processes to discover 
information and 
knowledge. [P3]

Ek 3.2.2A Large data sets include data such as transactions, 
measurements, texts, sounds, images, and videos.

Ek 3.2.2B The storing, processing, and curating of large 
data sets is challenging.

Ek 3.2.2C Structuring large data sets for analysis can be 
challenging.

Ek 3.2.2D Maintaining privacy of large data sets containing 
personal information can be challenging.

Ek 3.2.2E Scalability of systems is an important 
consideration when data sets are large.

Ek 3.2.2F The size or scale of a system that stores data affects  
how that data set is used.

Ek 3.2.2G The effective use of large data sets requires 
computational solutions.

Ek 3.2.2H Analytical techniques to store, manage, transmit, 
and process data sets change as the size of data sets scale.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

21AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 3
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 3.3 There are 
trade-offs when 
representing 
information as 
digital data.

lO 3.3.1 Analyze how 
data representation, 
storage, security, and 
transmission of data 
involve computational 
manipulation of 
information. [P4]

Ek 3.3.1A Digital data representations involve trade-offs 
related to storage, security, and privacy concerns.

Ek 3.3.1B Security concerns engender trade-offs in storing 
and transmitting information.

Ek 3.3.1C There are trade-offs in using lossy and lossless 
compression techniques for storing and transmitting data.

Ek 3.3.1D Lossless data compression reduces the 
number of bits stored or transmitted but allows complete 
reconstruction of the original data.

Ek 3.3.1E Lossy data compression can significantly reduce 
the number of bits stored or transmitted at the cost of being 
able to reconstruct only an approximation of the original 
data.

Ek 3.3.1F Security and privacy concerns arise with data 
containing personal information.

Ek 3.3.1G Data is stored in many formats depending on its 
characteristics (e.g., size and intended use).

Ek 3.3.1H The choice of storage media affects both the 
methods and costs of manipulating the data it contains.

Ek 3.3.1I Reading data and updating data have different 
storage requirements.



22
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 4

Big Idea 4: Algorithms
Algorithms are used to develop and express solutions to computational problems. 
Algorithms are fundamental to even the most basic everyday task. Algorithms 
realized in software have affected the world in profound and lasting ways. Secure 
data transmission and quick access to large amounts of relevant information are 
made possible through the implementation of algorithms. The development, use, 
and analysis of algorithms are some of the most fundamental aspects of computing. 
Students in this course work with algorithms in many ways: they develop and 
express original algorithms, they implement algorithms in a language, and they 
analyze algorithms analytically and empirically.

Essential Questions:

 ▶ How are algorithms implemented and executed on computers and computational 
devices?

▶ Why are some languages better than others when used to implement algorithms?

▶ What kinds of problems are easy, what kinds are difficult, and what kinds are 
impossible to solve algorithmically?

 ▶ How are algorithms evaluated?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 4.1 Algorithms are 
precise sequences 
of instructions for 
processes that can 
be executed by 
a computer and 
are implemented 
using programming 
languages.

lO 4.1.1 Develop 
an algorithm for 
implementation in 
a program. [P2]

Ek 4.1.1A Sequencing, selection, and iteration are building 
blocks of algorithms.

Ek 4.1.1B Sequencing is the application of each step of an 
algorithm in the order in which the statements are given.

Ek 4.1.1C Selection uses a Boolean condition to determine 
which of two parts of an algorithm is used.

Ek 4.1.1D Iteration is the repetition of part of an algorithm 
until a condition is met or for a specified number of times.

Ek 4.1.1E Algorithms can be combined to make new algorithms.

Ek 4.1.1F Using existing correct algorithms as building 
blocks for constructing a new algorithm helps ensure the 
new algorithm is correct.

Ek 4.1.1G Knowledge of standard algorithms can help in 
constructing new algorithms.

Ek 4.1.1H Different algorithms can be developed to solve 
the same problem.

Ek 4.1.1I Developing a new algorithm to solve a problem 
can yield insight into the problem.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

23AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 4
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 4.1 Algorithms are 
precise sequences 
of instructions for 
processes that can 
be executed by 
a computer and 
are implemented 
using programming 
languages.

(continued)

lO 4.1.2 Express 
an algorithm in a 
language. [P5]

Ek 4.1.2A Languages for algorithms include natural 
language, pseudocode, and visual and textual programming 
languages.

Ek 4.1.2B Natural language and pseudocode describe 
algorithms so that humans can understand them.

Ek 4.1.2C Algorithms described in programming languages  
can be executed on a computer.

Ek 4.1.2D Different languages are better suited for expressing  
different algorithms.

Ek 4.1.2E Some programming languages are designed for  
specific domains and are better for expressing algorithms  
in those domains.

Ek 4.1.2F The language used to express an algorithm can 
affect characteristics such as clarity or readability but not 
whether an algorithmic solution exists.

Ek 4.1.2G Every algorithm can be constructed using only  
sequencing, selection, and iteration.

Ek 4.1.2H Nearly all programming languages are equivalent 
in terms of being able to express any algorithm.

Ek 4.1.2I Clarity and readability are important 
considerations when expressing an algorithm in a language.

EU 4.2 Algorithms 
can solve many, but 
not all, computational 
problems.

lO 4.2.1 Explain the 
difference between 
algorithms that run 
in a reasonable time 
and those that do not 
run in a reasonable 
time. [P1]

EXClUSION 
STATEmENT  
(for lO 4.2.1): 
Any discussion of 
nondeterministic 
polynomial (NP) is 
beyond the scope 
of this course and 
the AP Exam.

Ek 4.2.1A Many problems can be solved in a reasonable time.

Ek 4.2.1B Reasonable time means that the number of steps the 
algorithm takes is less than or equal to a polynomial function 
(constant, linear, square, cube, etc.) of the size of the input.

EXClUSION STATEmENT (for Ek 4.2.1B): Using nonpolynomial 
functions to describe relationships between the number of  
steps required by an algorithm and the input size is beyond the  
scope of this course and the AP Exam.

Ek 4.2.1C Some problems cannot be solved in a reasonable  
time, even for small input sizes.

Ek 4.2.1D Some problems can be solved but not in a 
reasonable time. In these cases, heuristic approaches may 
be helpful to find solutions in reasonable time.



24
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 4

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 4.2 Algorithms 
can solve many, but 
not all, computational 
problems.

(continued)

lO 4.2.2 Explain 
the difference 
between solvable 
and unsolvable 
problems in computer 
science. [P1] 

EXClUSION 
STATEmENT  
(for lO 4.2.2): 
Determining 
whether a given 
problem is solvable 
or unsolvable is 
beyond the scope 
of this course and 
the AP Exam.

Ek 4.2.2A A heuristic is a technique that may allow us to 
find an approximate solution when typical methods fail to 
find an exact solution.

Ek 4.2.2B Heuristics may be helpful for finding an approximate 
solution more quickly when exact methods are too slow.

EXClUSION STATEmENT (for Ek 4.2.2B): Specific heuristic 
solutions are beyond the scope of this course and the  
AP Exam.

Ek 4.2.2C Some optimization problems such as “find the 
best” or “find the smallest” cannot be solved in a reasonable 
time but approximations to the optimal solution can.

Ek 4.2.2D Some problems cannot be solved using any  
algorithm.

lO 4.2.3 Explain 
the existence 
of undecidable 
problems in computer
science. [P1] 

 

Ek 4.2.3A An undecidable problem may have instances that 
have an algorithmic solution, but there is no algorithmic 
solution that solves all instances of the problem.

Ek 4.2.3B A decidable problem is one in which an algorithm  
can be constructed to answer “yes” or “no” for all inputs  
(e.g., “Is the number even?”).

Ek 4.2.3C An undecidable problem is one in which no  
algorithm can be constructed that always leads to a correct  
yes-or-no answer.

EXClUSION STATEmENT (for Ek 4.2.3C): Determining 
whether a given problem is undecidable is beyond 
the scope of this course and the AP Exam.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

25AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 4
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 4.2 Algorithms 
can solve many, but 
not all, computational 
problems.

(continued)

lO 4.2.4 Evaluate 
algorithms 
analytically 
and empirically 
for efficiency, 
correctness, and 
clarity. [P4] 

Ek 4.2.4A Determining an algorithm’s efficiency is done by 
reasoning formally or mathematically about the algorithm.

Ek 4.2.4B Empirical analysis of an algorithm is done by 
implementing the algorithm and running it on different 
inputs.

Ek 4.2.4C The correctness of an algorithm is determined by 
reasoning formally or mathematically about the algorithm, 
not by testing an implementation of the algorithm.

EXClUSION STATEmENT (for Ek 4.2.4C): Formally proving  
program correctness is beyond the scope of this course  
and the AP Exam.

Ek 4.2.4D Different correct algorithms for the same problem  
can have different efficiencies.

Ek 4.2.4E Sometimes, more efficient algorithms are more  
complex.

Ek 4.2.4F Finding an efficient algorithm for a problem can 
help solve larger instances of the problem.

Ek 4.2.4G Efficiency includes both execution time and  
memory usage. 

EXClUSION STATEmENT (for Ek 4.2.4G): Formal analysis of  
algorithms (Big-O) and formal reasoning using 
mathematical formulas are beyond the scope of this 
course and the AP Exam.

Ek 4.2.4H Linear search can be used when searching for an 
item in any list; binary search can be used only when the 
list is sorted.



26
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 5

Big Idea 5: Programming
Programming enables problem solving, human expression, and creation of 
knowledge. Programming and the creation of software has changed our lives. 
Programming results in the creation of software, and it facilitates the creation of 
computational artifacts, including music, images, and visualizations. In this course, 
programming enables exploration and is the object of study. This course introduces 
students to the concepts and techniques related to writing programs, developing 
software, and using software effectively. The particular programming language 
is selected based on appropriateness for a specific project or problem. The course 
acquaints students with fundamental concepts of programming that can be applied 
across a variety of projects and languages. As students learn language specifics for 
a given programming language, they create programs, translating human intention 
into computational artifacts.

Essential Questions:

 ▶ How are programs developed to help people, organizations, or society solve problems?

 ▶ How are programs used for creative expression, to satisfy personal curiosity, or to 
create new knowledge?

 ▶ How do computer programs implement algorithms?

 ▶ How does abstraction make the development of computer programs possible?

 ▶ How do people develop and test computer programs?

 ▶ Which mathematical and logical concepts are fundamental to computer programming?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 5.1 Programs can 
be developed for 
creative expression, 
to satisfy personal 
curiosity, to create 
new knowledge, or 
to solve problems 
(to help people, 
organizations, 
or society).

lO 5.1.1 Develop a 
program for creative 
expression, to satisfy 
personal curiosity, 
or to create new 
knowledge. [P2]

Ek 5.1.1A Programs are developed and used in a variety of  
ways by a wide range of people depending on the goals  
of the programmer.

Ek 5.1.1B Programs developed for creative expression, to  
satisfy personal curiosity, or to create new knowledge may  
have visual, audible, or tactile inputs and outputs.

Ek 5.1.1C Programs developed for creative expression, to  
satisfy personal curiosity, or to create new knowledge may  
be developed with different standards or methods than 
programs developed for widespread distribution.

Ek 5.1.1D Additional desired outcomes may be realized 
independently of the original purpose of the program.

Ek 5.1.1E A computer program or the results of running  
a program may be rapidly shared with a large number  
of users and can have widespread impact on individuals,  
organizations, and society.

Ek 5.1.1F Advances in computing have generated and  
increased creativity in other fields.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

27AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 5
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 5.1 Programs can 
be developed for 
creative expression, 
to satisfy personal 
curiosity, to create 
new knowledge, or 
to solve problems 
(to help people, 
organizations, 
or society).

(continued)

lO 5.1.2 Develop a 
correct program to 
solve problems. [P2]

Ek 5.1.2A An iterative process of program development 
helps in developing a correct program to solve problems.

Ek 5.1.2B Developing correct program components and 
then combining them helps in creating correct programs.

Ek 5.1.2C Incrementally adding tested program segments to 
correct working programs helps create large correct programs.

Ek 5.1.2D Program documentation helps programmers develop 
and maintain correct programs to efficiently solve problems.

Ek 5.1.2E Documentation about program components, such 
as code segments and procedures, helps in developing and 
maintaining programs.

Ek 5.1.2F Documentation helps in developing and 
maintaining programs when working individually or in 
collaborative programming environments.

Ek 5.1.2G Program development includes identifying 
programmer and user concerns that affect the solution to 
problems.

Ek 5.1.2H Consultation and communication with program 
users is an important aspect of program development to 
solve problems.

Ek 5.1.2I A programmer’s knowledge and skill affects 
how a program is developed and how it is used to solve a 
problem.

Ek 5.1.2J A programmer designs, implements, tests, 
debugs, and maintains programs when solving problems.

lO 5.1.3 Collaborate 
to develop a 
program. [P6]

Ek 5.1.3A Collaboration can decrease the size and 
complexity of tasks required of individual programmers.

Ek 5.1.3B Collaboration facilitates multiple perspectives in 
developing ideas for solving problems by programming.

Ek 5.1.3C Collaboration in the iterative development of a 
program requires different skills than developing a program 
alone.

Ek 5.1.3D Collaboration can make it easier to find and 
correct errors when developing programs.

Ek 5.1.3E Collaboration facilitates developing program 
components independently.

Ek 5.1.3F Effective communication between participants 
is required for successful collaboration when developing 
programs.



28
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 5

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 5.2 People 
write programs to 
execute algorithms.

lO 5.2.1 Explain how 
programs implement 
algorithms. [P3]

Ek 5.2.1A Algorithms are implemented using program 
instructions that are processed during program execution.

Ek 5.2.1B Program instructions are executed sequentially.

Ek 5.2.1C Program instructions may involve variables that  
are initialized and updated, read, and written.

Ek 5.2.1D An understanding of instruction processing and  
program execution is useful for programming.

Ek 5.2.1E Program execution automates processes.

Ek 5.2.1F Processes use memory, a central processing unit  
(CPU), and input and output.

Ek 5.2.1G A process may execute by itself or with other  
processes.

Ek 5.2.1H A process may execute on one or several CPUs.

Ek 5.2.1I Executable programs increase the scale of problems 
that can be addressed.

Ek 5.2.1J Simple algorithms can solve a large set of problems  
when automated.

Ek 5.2.1k Improvements in algorithms, hardware, and 
software increase the kinds of problems and the size of 
problems solvable by programming.

EU 5.3 Programming 
is facilitated 
by appropriate 
abstractions.

lO 5.3.1 Use 
abstraction to 
manage complexity 
in programs. [P3]

Ek 5.3.1A Procedures are reusable programming abstractions.

Ek 5.3.1B A procedure is a named grouping of programming 
instructions.

Ek 5.3.1C Procedures reduce the complexity of writing and  
maintaining programs.

Ek 5.3.1D Procedures have names and may have  
parameters and return values.

Ek 5.3.1E Parameterization can generalize a specific  
solution.

Ek 5.3.1F Parameters generalize a solution by allowing a  
procedure to be used instead of duplicated code.

Ek 5.3.1G Parameters provide different values as input to  
procedures when they are called in a program.

Ek 5.3.1H Data abstraction provides a means of separating  
behavior from implementation.

Ek 5.3.1I Strings and string operations, including concatenation 
and some form of substring, are common in many programs.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

29AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 5
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 5.3 Programming 
is facilitated 
by appropriate 
abstractions.

(continued)

lO 5.3.1 Use 
abstraction to 
manage complexity 
in programs. [P3]

(continued)

Ek 5.3.1J Integers and floating-point numbers are used in  
programs without requiring understanding of how they  
are implemented.

Ek 5.3.1k Lists and list operations, such as add, remove, 
and search, are common in many programs.

Ek 5.3.1l Using lists and procedures as abstractions in  
programming can result in programs that are easier to  
develop and maintain.

Ek 5.3.1m Application program interfaces (APIs) and 
libraries simplify complex programming tasks.

Ek 5.3.1N Documentation for an API/library is an important  
aspect of programming.

Ek 5.3.1O APIs connect software components, allowing 
them to communicate.

EU 5.4 Programs 
are developed, 
maintained, and 
used by people for 
different purposes.

lO 5.4.1 Evaluate 
the correctness of 
a program. [P4]

Ek 5.4.1A Program style can affect the determination of 
program correctness.

Ek 5.4.1B Duplicated code can make it harder to reason 
about a program.

Ek 5.4.1C Meaningful names for variables and procedures 
help people better understand programs.

Ek 5.4.1D Longer code segments are harder to reason about 
than shorter code segments in a program.

Ek 5.4.1E Locating and correcting errors in a program is 
called debugging the program.

Ek 5.4.1F Knowledge of what a program is supposed to do 
is required in order to find most program errors.

Ek 5.4.1G Examples of intended behavior on specific inputs 
help people understand what a program is supposed to do.

Ek 5.4.1H Visual displays (or different modalities) of 
program state can help in finding errors.

Ek 5.4.1I Programmers justify and explain a program’s 
correctness.

Ek 5.4.1J Justification can include a written explanation 
about how a program meets its specifications.



30
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 5

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 5.4 Programs 
are developed, 
maintained, and 
used by people for 
different purposes.

(continued)

lO 5.4.1 Evaluate 
the correctness of 
a program. [P4]

(continued)

Ek 5.4.1k Correctness of a program depends on correctness 
of program components, including code segments and 
procedures.

Ek 5.4.1l An explanation of a program helps people 
understand the functionality and purpose of it.

Ek 5.4.1m The functionality of a program is often described 
by how a user interacts with it.

Ek 5.4.1N The functionality of a program is best described at 
a high level by what the program does, not at the lower level 
of how the program statements work to accomplish this.

EU 5.5 Programming 
uses mathematical 
and logical concepts.

lO 5.5.1 Employ 
appropriate 
mathematical and 
logical concepts in 
programming. [P1]

Ek 5.5.1A Numbers and numerical concepts are 
fundamental to programming.

Ek 5.5.1B Integers may be constrained in the maximum 
and minimum values that can be represented in a program 
because of storage limitations. 

EXClUSION STATEmENT (for Ek 5.5.1B): Specific range 
limitations of all programming languages are beyond the 
scope of this course and the AP Exam.

Ek 5.5.1C Real numbers are approximated by floating-point 
representations that do not necessarily have infinite precision.

EXClUSION STATEmENT (for Ek 5.5.1C): Specific sets of 
values that cannot be exactly represented by floating-point 
numbers are beyond the scope of this course and the 
AP Exam.

Ek 5.5.1D Mathematical expressions using arithmetic 
operators are part of most programming languages.

Ek 5.5.1E Logical concepts and Boolean algebra are 
fundamental to programming.

Ek 5.5.1F Compound expressions using and, or, and not are 
part of most programming languages.

Ek 5.5.1G Intuitive and formal reasoning about program 
components using Boolean concepts helps in developing 
correct programs.

Ek 5.5.1H Computational methods may use lists and 
collections to solve problems.

Ek 5.5.1I Lists and other collections can be treated as 
abstract data types (ADTs) in developing programs.

Ek 5.5.1J Basic operations on collections include adding 
elements, removing elements, iterating over all elements, 
and determining whether an element is in a collection.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

31AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 6
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Big Idea 6: The Internet
The Internet pervades modern computing. The Internet and the systems built on it 
have had a profound impact on society. Computer networks support communication 
and collaboration. The principles of systems and networks that helped enable the 
Internet are also critical in the implementation of computational solutions. Students 
in this course gain insight into how the Internet operates, study characteristics 
of the Internet and systems built on it, and analyze important concerns such as 
cybersecurity.

Essential Questions:

▶ What is the Internet? How is it built? How does it function?

▶ What aspects of the Internet’s design and development have helped it scale and 
flourish?

 ▶ How is cybersecurity impacting the ever-increasing number of Internet users?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 6.1 The Internet 
is a network of 
autonomous systems.

lO 6.1.1 Explain 
the abstractions 
in the Internet and 
how the Internet 
functions. [P3] 

EXClUSION 
STATEmENT  
(for lO 6.1.1): 
Specific devices 
used to implement 
the abstractions 
in the Internet are 
beyond the scope 
of this course and 
the AP Exam.

Ek 6.1.1A The Internet connects devices and networks all  
over the world.

Ek 6.1.1B An end-to-end architecture facilitates connecting  
new devices and networks on the Internet.

Ek 6.1.1C Devices and networks that make up the Internet  
are connected and communicate using addresses and  
protocols.

Ek 6.1.1D The Internet and the systems built on it facilitate  
collaboration.

Ek 6.1.1E Connecting new devices to the Internet is enabled 
by assignment of an Internet protocol (IP) address.

Ek 6.1.1F The Internet is built on evolving standards, 
including those for addresses and names. 

EXClUSION STATEmENT (for Ek 6.1.1F): Specific details of  
any particular standard for addresses are beyond the scope  
of this course and the AP Exam.

Ek 6.1.1G The domain name system (DNS) translates 
domain names to IP addresses.

Ek 6.1.1H The number of devices that could use an IP 
address has grown so fast that a new protocol (IPv6) has 
been established to handle routing of many more devices.

Ek 6.1.1I Standards such as hypertext transfer protocol (HTTP), 
IP, and simple mail transfer protocol (SMTP) are developed 
and overseen by the Internet Engineering Task Force (IETF).



32
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 6

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 6.2 Characteristics 
of the Internet 
influence the 
systems built on it.

lO 6.2.1 Explain 
characteristics 
of the Internet 
and the systems 
built on it. [P5]

Ek 6.2.1A The Internet and the systems built on it are  
hierarchical and redundant.

Ek 6.2.1B The domain name syntax is hierarchical.

Ek 6.2.1C IP addresses are hierarchical.

Ek 6.2.1D Routing on the Internet is fault tolerant and 
redundant.

lO 6.2.2 Explain how 
the characteristics 
of the Internet 
influence the systems 
built on it. [P4]

Ek 6.2.2A Hierarchy and redundancy help systems scale.

Ek 6.2.2B The redundancy of routing (i.e., more than one  
way to route data) between two points on the Internet  
increases the reliability of the Internet and helps it scale  
to more devices and more people.

Ek 6.2.2C Hierarchy in the DNS helps that system scale.

Ek 6.2.2D Interfaces and protocols enable widespread use  
of the Internet.

Ek 6.2.2E Open standards fuel the growth of the Internet.

Ek 6.2.2F The Internet is a packet-switched system through 
which digital data is sent by breaking the data into blocks 
of bits called packets, which contain both the data being 
transmitted and control information for routing the data.

EXClUSION STATEmENT (for Ek 6.2.2F): Specific 
details of any particular packet-switching system are 
beyond the scope of this course and the AP Exam.

Ek 6.2.2G Standards for packets and routing include  
transmission control protocol/Internet protocol (TCP/IP). 

EXClUSION STATEmENT (for Ek 6.2.2G): Specific technical  
details of how TCP/IP works are beyond the scope of this  
course and the AP Exam.

Ek 6.2.2H Standards for sharing information and 
communicating between browsers and servers on the Web 
include HTTP and secure sockets layer/transport layer security 
(SSL/TLS). 

EXClUSION STATEmENT (for Ek 6.2.2H): Understanding 
the technical aspects of how SSL/TLS works is 
beyond the scope of this course and the AP Exam.

Ek 6.2.2I The size and speed of systems affect their use.

Ek 6.2.2J The bandwidth of a system is a measure of bit  
rate — the amount of data (measured in bits) that can be  
sent in a fixed amount of time.

Ek 6.2.2k The latency of a system is the time elapsed 
between the transmission and the receipt of a request.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

33AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 6
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 6.3 Cybersecurity 
is an important 
concern for the 
Internet and the 
systems built on it.

lO 6.3.1 Identify 
existing cybersecurity 
concerns and 
potential options to 
address these issues 
with the Internet 
and the systems 
built on it. [P1]

Ek 6.3.1A The trust model of the Internet involves trade-offs.

Ek 6.3.1B The DNS was not designed to be completely secure.

Ek 6.3.1C Implementing cybersecurity has software, hardware,  
and human components.

Ek 6.3.1D Cyberwarfare and cybercrime have widespread  
and potentially devastating effects.

Ek 6.3.1E Distributed denial-of-service attacks (DDoS) 
compromise a target by flooding it with requests from  
multiple systems.

Ek 6.3.1F Phishing, viruses, and other attacks have human 
and software components.

 

Ek 6.3.1G Antivirus software and firewalls can help prevent  
unauthorized access to private data.

Ek 6.3.1H Cryptography is essential to many models of  
cybersecurity.

Ek 6.3.1I Cryptography has a mathematical foundation. 

EXClUSION STATEmENT (for Ek 6.3.1I): Specific mathematical 
functions used in cryptography are beyond the scope of this 
course and the AP Exam.

Ek 6.3.1J Open standards help ensure cryptography  
is secure.

Ek 6.3.1k Symmetric encryption is a method of encryption 
involving one key for encryption and decryption. 

EXClUSION STATEmENT (for Ek 6.3.1k): The methods used in  
encryption are beyond the scope of this course and the 
AP Exam.

Ek 6.3.1l Public key encryption, which is not symmetric, is 
an encryption method that is widely used because of the  
functionality it provides. 

EXClUSION STATEmENT (for Ek 6.3.1l): The mathematical  
methods used in public key cryptography are beyond the  
scope of this course and the AP Exam.

Ek 6.3.1m Certificate authorities (CAs) issue digital certificates 
that validate the ownership of encrypted keys used in 
secured communications and are based on a trust model. 

EXClUSION STATEmENT (for Ek 6.3.1m): The technical  
details of the process CAs follow are beyond the scope of  
this course and the AP Exam.



34
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 7

Big Idea 7: Global Impact
Computing has global impact. Computation has changed the way people think, 
work, live, and play. Our methods for communicating, collaborating, problem 
solving, and doing business have changed and are changing due to computing 
innovations, which are innovations that include a computer or program code as 
an integral part of their function. Many innovations in other fields are fostered by 
advances in computing. Computational approaches lead to new understandings, 
new discoveries, and new disciplines. Students in this course become familiar with 
many ways in which computing enables innovation, and they analyze the potential 
benefits and harmful effects of computing in a number of contexts.

Essential Questions:

 ▶ How does computing enhance human communication, interaction, and cognition?

 ▶ How does computing enable innovation?

 ▶ What are some potential beneficial and harmful effects of computing?

 ▶ How do economic, social, and cultural contexts influence innovation and the use of 
computing?

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 7.1 Computing 
enhances 
communication, 
interaction, and 
cognition.

lO 7.1.1 Explain 
how computing 
innovations affect 
communication, 
interaction, and 
cognition. [P4]

Ek 7.1.1A Email, SMS, and chat have fostered new ways  
to communicate and collaborate.

Ek 7.1.1B Video conferencing and video chat have fostered  
new ways to communicate and collaborate.

Ek 7.1.1C Social media continues to evolve and fosters  
new ways to communicate. 

EXClUSION STATEmENT (for Ek 7.1.1C): Detailed 
knowledge of any social media site is beyond the scope of  
this course and the AP Exam.

Ek 7.1.1D Cloud computing fosters new ways to communicate  
and collaborate.

Ek 7.1.1E Widespread access to information facilitates the  
identification of problems, development of solutions, and  
dissemination of results.

Ek 7.1.1F Public data provides widespread access and enables  
solutions to identified problems.

Ek 7.1.1G Search trends are predictors.

Ek 7.1.1H Social media, such as blogs and Twitter, have  
enhanced dissemination.

Ek 7.1.1I Global Positioning System (GPS) and related 
technologies have changed how humans travel, navigate,  
and find information related to geolocation.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

35AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 7
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 7.1 Computing 
enhances 
communication, 
interaction, and 
cognition.

(continued)

lO 7.1.1 Explain 
how computing 
innovations affect 
communication, 
interaction, and 
cognition. [P4]

(continued)

Ek 7.1.1J Sensor networks facilitate new ways of interacting 
with the environment and with physical systems.

Ek 7.1.1k Smart grids, smart buildings, and smart 
transportation are changing and facilitating human capabilities.

Ek 7.1.1l Computing contributes to many assistive 
technologies that enhance human capabilities.

Ek 7.1.1m The Internet and the Web have enhanced methods 
of and opportunities for communication and collaboration.

Ek 7.1.1N The Internet and the Web have changed many 
areas, including e-commerce, health care, access to 
information and entertainment, and online learning.

Ek 7.1.1O The Internet and the Web have impacted 
productivity, positively and negatively, in many areas.

lO 7.1.2 Explain how 
people participate 
in a problem-
solving process 
that scales. [P4]

Ek 7.1.2A Distributed solutions must scale to solve some  
problems.

Ek 7.1.2B Science has been impacted by using scale and 
“citizen science” to solve scientific problems using home  
computers in scientific research.

Ek 7.1.2C Human computation harnesses contributions from
many humans to solve problems related to digital data and  
the Web.

 

Ek 7.1.2D Human capabilities are enhanced by digitally  
enabled collaboration.

Ek 7.1.2E Some online services use the contributions of 
many people to benefit both individuals and society.

Ek 7.1.2F Crowdsourcing offers new models for collaboration,
such as connecting people with jobs and businesses with 
funding.

 

Ek 7.1.2G The move from desktop computers to a proliferation 
of always-on mobile computers is leading to new applications.

EU 7.2 Computing 
enables innovation 
in nearly every field.

lO 7.2.1 Explain 
how computing has 
impacted innovations 
in other fields. [P1]

Ek 7.2.1A Machine learning and data mining have enabled 
innovation in medicine, business, and science.

Ek 7.2.1B Scientific computing has enabled innovation in  
science and business.

Ek 7.2.1C Computing enables innovation by providing the 
ability to access and share information.

Ek 7.2.1D Open access and Creative Commons have enabled 
broad access to digital information.



36
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 7

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 7.2 Computing 
enables innovation 
in nearly every field.

(continued)

lO 7.2.1 Explain 
how computing has 
impacted innovations 
in other fields. [P1]

(continued)

Ek 7.2.1E Open and curated scientific databases have benefited  
scientific researchers.

Ek 7.2.1F Moore’s law has encouraged industries that use 
computers to effectively plan future research and development 
based on anticipated increases in computing power.

Ek 7.2.1G Advances in computing as an enabling technology 
have generated and increased the creativity in other fields.

EU 7.3 Computing 
has global effects — 
both beneficial 
and harmful — on 
people and society.

lO 7.3.1 Analyze 
the beneficial and 
harmful effects of 
computing. [P4]

Ek 7.3.1A Innovations enabled by computing raise legal and  
ethical concerns.

Ek 7.3.1B Commercial access to music and movie downloads  
and streaming raises legal and ethical concerns.

Ek 7.3.1C Access to digital content via peer-to-peer networks  
raises legal and ethical concerns.

Ek 7.3.1D Both authenticated and anonymous access to digital  
information raise legal and ethical concerns.

Ek 7.3.1E Commercial and governmental censorship of digital  
information raise legal and ethical concerns.

Ek 7.3.1F Open source and licensing of software and content  
raise legal and ethical concerns.

Ek 7.3.1G Privacy and security concerns arise in the 
development and use of computational systems and 
artifacts.

Ek 7.3.1H Aggregation of information, such as geolocation,  
cookies, and browsing history, raises privacy and security  
concerns.

Ek 7.3.1I Anonymity in online interactions can be enabled 
through the use of online anonymity software and proxy 
servers.

Ek 7.3.1J Technology enables the collection, use, and  
exploitation of information about, by, and for individuals,  
groups, and institutions.

Ek 7.3.1k People can have instant access to vast amounts of 
information online; accessing this information can enable  
the collection of both individual and aggregate data that can  
be used and collected.

Ek 7.3.1l Commercial and governmental curation of 
information may be exploited if privacy and other 
protections are ignored.

Ek 7.3.1m Targeted advertising is used to help individuals, 
but it can be misused at both individual and aggregate 
levels.

C
u

r
r

iC
u

lu
m

 Fr
a

m
e

w
o

r
k



Return to  
Table of Contents

© 2017 The College Board

37AP Computer Science Principles Course and Exam Description

Concept Outline: Big Idea 7
C

u
r

r
iC

u
lu

m
 Fr

a
m

e
w

o
r

k

Enduring 
Understandings
(Students will 
understand that … )

Learning 
Objectives
(Students will 
be able to … )

Essential Knowledge
(Students will know that … )

EU 7.3 Computing 
has global effects — 
both beneficial 
and harmful — on 
people and society.

(continued)

lO 7.3.1 Analyze 
the beneficial and 
harmful effects of 
computing. [P4]

(continued)

Ek 7.3.1N Widespread access to digitized information 
raises questions about intellectual property.

Ek 7.3.1O Creation of digital audio, video, and textual content 
by combining existing content has been impacted by 
copyright concerns.

Ek 7.3.1P The Digital Millennium Copyright Act (DMCA) has  
been a benefit and a challenge in making copyrighted digital  
material widely available.

Ek 7.3.1Q Open source and free software have practical,  
business, and ethical impacts on widespread access to  
programs, libraries, and code.

EU 7.4 Computing 
innovations influence 
and are influenced by 
the economic, social, 
and cultural contexts 
in which they are 
designed and used.

lO 7.4.1 Explain the 
connections between
computing and 
real-world contexts, 
including economic, 
social, and cultural 
contexts. [P1]

 
Ek 7.4.1A The innovation and impact of social media and  
online access varies in different countries and in different  
socioeconomic groups.

Ek 7.4.1B Mobile, wireless, and networked computing have 
an impact on innovation throughout the world.

Ek 7.4.1C The global distribution of computing resources 
raises issues of equity, access, and power.

Ek 7.4.1D Groups and individuals are affected by the “digital 
divide” — differing access to computing and the Internet 
based on socioeconomic or geographic characteristics.

Ek 7.4.1E Networks and infrastructure are supported by both 
commercial and governmental initiatives.

EU 7.5 An 
investigative 
process is aided by 
effective organization 
and selection 
of resources. 
Appropriate 
technologies and 
tools facilitate 
the accessing of 
information and 
enable the ability 
to evaluate the 
credibility of sources.

lO 7.5.1 Access, 
manage, and 
attribute information 
using effective 
strategies. [P1]

Ek 7.5.1A Online databases and libraries catalog and house 
secondary and some primary sources.

Ek 7.5.1B Advance search tools, Boolean logic, and key 
words can refine the search focus and/or limit search results 
based on a variety of factors (e.g., data, peer-review status, 
type of publication).

Ek 7.5.1C Plagiarism is a serious offense that occurs when a 
person presents another’s ideas or words as his or her own. 
Plagiarism may be avoided by accurately acknowledging 
sources.

lO 7.5.2 Evaluate 
online and print 
sources for 
appropriateness and 
credibility. [P5]

Ek 7.5.2A Determining the credibility of a source requires 
considering and evaluating the reputation and credentials 
of the author(s), publisher(s), site owner(s), and/or sponsor(s).

Ek 7.5.2B Information from a source is considered relevant 
when it supports an appropriate claim or the purpose of the 
investigation.



38
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

AP Computer Science Principles 
Instructional Approaches
The AP Computer Science Principles course provides students with the 
opportunity to develop computational thinking skills, an understanding of the 
real-world impact of computing, and programming literacy. The course exposes 
students to the breadth and relevance of computer science across many fields of 
study that incorporate computer science knowledge. A strong focus on creativity 
as it applies to the creation of computational artifacts allows a broader range 
of students to discover where computer science could fit in their lives, and 
it prepares more students for success in computer science and other related 
STEM fields.

When designing a plan to teach the course, teachers should include ample 
opportunities for students to collaborate and be creative as they engage in the 
learning of the course content. Teachers should establish protocols and use 
platforms that facilitate collaboration. Cooperative-learning strategies and pair 
programming are suggested practices for fostering collaboration and creativity.

Because the field of computer science changes rapidly, teachers should strive 
to keep their courses current by reserving class time to investigate emerging 
computing innovations that are being used for creative expression or to solve 
authentic problems. Whenever possible, teachers can use recent technology to help 
students connect the applicable nature of computing to multiple fields of study. 
Providing opportunities for students to explore and discuss computing innovations 
that impact their lives will help them develop their own ideas for creating 
computational artifacts.

Planning Your Course

Choosing a Programming language

AP Computer Science Principles does not require a specific programming language. 
Because a goal of this course is to broaden participation, teachers can create their 
AP Computer Science Principles course centered around computing concepts 
in the curriculum framework that support the creation of exciting and relevant 
computational artifacts. For this reason, teachers are encouraged to select a 
programming language(s) that is most appropriate for their classroom and that will 
provide students opportunities to successfully engage with the course content. 
The programming language selected should contain functionality that is specified 
in the curriculum framework and performance tasks. Appropriate programming 
languages for this course are ones that allow students to create text, evaluate 
expressions, and use variables, conditionals, loops, lists, and procedures. Below is 
short list of programming languages that can be considered to use in this course. 
Teachers are encouraged to examine other programming languages as they plan for 
instruction.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

39AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Language/Product Description

Alice This 3-D modeling environment allows students to create and animate 3-D 
worlds. This environment lends itself well to creating stories and games.

App Inventor This open-source Web application allows students to create their own 
applications on mobile devices.

App lab This is a programming environment for creating web applications with 
JavaScript. It allows students to develop programs and toggle back and forth 
between block-based and text-based programming modes.

EarSketch This browser-based application allows students to create their own music 
using either JavaScript or Python.

Greenfoot This Java IDE is designed for use in education to create two-dimensional 
graphic applications, such as simulations and interactive games.

Java There are several IDEs that can be used to write in Java. The Java language 
allows students to create and solve problems that vary widely in difficulty.

JavaScript This language is commonly used to create interactive effects within Web 
browsers.

lego mindstorms NXT This product integrates programming with Lego bricks and sensors to create 
and program robots. The instructions are assembled by linking together 
function blocks.

Processing This programming language was initially created to serve as a software 
sketchbook, and it can be used to teach programming using a visual context.

Python This language has the benefit of readability that might be helpful to new 
programmers.

Scratch This blocks-based programming language allows students to build scripts 
to run animations. This product can be downloaded and installed on a 
computer or run in the browser.

Snap! This Scratch-style programming language is block-based and allows users 
to define new primitives in JavaScript. Users can read and write information 
from the Internet using server-defined APIs and make mobile applications.

Swift This programming language is designed for use with iOS, OS X, tvOS and 
watchOS. This environment allows students to create their own Apple apps 
and includes interactive environments that allow students to see the effects 
of changes or additions to code as they type.

This course provides students with an AP Computer Science Principles Exam 
Reference Sheet, as seen in the Reproducibles for Students section, to use when 
taking the AP Exam. The exam reference sheet is NOT meant to be a substitute 
for choosing a programming language that is recognized by the field of computer 
science or being used in postsecondary institutions. Because there is no designated 
programming language for the AP Computer Science Principles course, the exam 
reference sheet was developed in order to be able to assess students’ knowledge 
and skills in programming constructs as described in the curriculum framework. It 
is meant to establish a common way to communicate programming concepts for 
the purpose of the exam. Teachers are encouraged to integrate the use of the exam 
reference sheet throughout the school year.



40
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Organizational Approaches

There are several different approaches for organizing an AP Computer Science 
Principles course. This section will explain and give examples of how to use 
the approaches that are represented in one or more of the course planning and 
pacing guides, which can be found on AP Central. As teachers are designing their 
course and deciding on the objectives of lessons, they may want to pose a project as 
a problem or as a question and allow students to create a computational artifact to 
solve the problem or answer the question. Providing students with opportunities to 
collaborate as they work through their projects while combining these approaches 
together creates an environment that is conducive to developing critical thinking 
and problem-solving skills in a creative way.

Approach Key Characteristics
Examples in AP Computer 
Science Principles

Project based ▶ Students are presented with an
outline for a long-term project 
or a problem to solve.

 

 ▶ Students are required to plan, 
implement, and test a solution.

 ▶ Students work in groups or 
individually to complete a project.

 ▶ Content can be taught as necessary or 
taught prior to the start of the project.

 ▶ Students create a story or 
tutorial for beginning computer 
science students to learn how the 
Internet transmits information.

 ▶ Students create a project to address 
the problem of sending a message 
publicly across the classroom 
without other students being 
able to discern the message.

Integrated ▶ Teachers spiral the curriculum 
to address multiple big ideas 
in the same project or unit.

Students read an article on a 
current technology and answer 
the following questions:

▶ Where are the generalizations and 
simplifications being made by 
the author? Is this abstraction?

▶ What are the potential beneficial and 
harmful effects of this technology?

▶ What data might be collected 
through the use of this technology?

▶ How would this technology 
use the Internet?

Inquiry based ▶ Students construct their own 
knowledge rather than acquiring it.

▶ New information is constructed 
based on personal experiences.

▶ Teachers guide students toward 
personal discoveries.

▶ Topics are introduced through  
current events and student  
experiences.

Teachers share an experience where 
they had a difficult time sending a 
picture through email. Students add 
their own knowledge and experience to 
the conversation and new knowledge 
emerges about how compression works. 
Some guiding questions might be:

▶ How is a picture stored 
on a computer?

▶ What are some ways that we can 
reduce the file size of a picture?

▶ What is the difference between 
lossy and lossless compression?

▶ Under which circumstances 
would you use each?

 

 

 

 

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

41AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Investigations in Computer Science

The AP Computer Science Principles course and the Explore — Impact of Computing 
Innovations performance task require students to conduct investigations of 
computing innovations. A computing innovation is an innovation that includes a 
computer or program code as an integral part of its function. Some examples of 
computing innovations include:

 ▶ physical computing innovations such as Google glasses and self-driving cars; and

▶ non-physical computing software (such as cell phone applications) or computing 
concepts (such as eCommerce), which rely on physical transactions conducted on 
the Internet.

Information on the through-course performance tasks appears in the Assessment 
Overview section. Teachers should help students understand that the investigation 
process is not simply about collecting evidence or facts and then piecing them 
together. This process should include asking questions and coming up with 
solutions and conclusions through thoughtful reflections, and often in the case 
of computer science, creating a computational solution. During the investigation 
process, AP Computer Science Principles students seek relevant information in 
articles, books, and other sources as well as through examining data, and they 
develop an informed perspective built on the ideas in the examined materials.

Evaluation of Sources

A critical element in conducting these investigations is the evaluation of sources. 
Students will be expected to discern sources as credible and relevant. If available, 
the school media specialist can be a resource to assist students with searching 
school databases, determining credible sources, and appropriately citing the 
reliability and credibility of sources.

The following are examples of instructional strategies and learning tools that can 
be used to help facilitate student investigations and the evaluation of the relevance 
and credibility of sources:

▶ Prompting students to help them plan for and conduct their investigations. It is 
recommended to use this strategy to scaffold the performance tasks by having 
students regularly conduct investigations and practice using evidence from this 
investigation, through the use of in-text citations, when answering questions that 
are similar to those in the through-course performance tasks.

▶ Providing students with a graphic organizer that will help to discern a source’s 
credibility based on a list of criteria about the source’s reputation, expertise, and 
potential slant.

▶ Using modeling and a think aloud to model the evaluation of sources.



42
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Sources should be evaluated for relevance and credibility. The following table 
illustrates considerations for evaluating sources.

Criteria Considerations
AP Computer Science Principles 
Examples and Illustrations

Credibility Credibility requires students to 
obtain information from sources 
with knowledge and expertise of the 
computing innovation. Sources can 
be print, online, or expert interviews. 
However, because many students are 
using the Internet or database sources, 
students should consider the following: 

 ▶ The domain name extensions 
indicate who publishes 
and owns the domain.

 ▶ The author of the website. 

▶ The sources that are cited in the 
materials as well as websites 
they link to are credible as well.

Commonly used extensions include: 
.edu (educational organization); .com 
(company); .org (any organization); .gov 
(government agency); .net (network).

Read past the first slash / in the domain 
name to see if the page might be 
someone’s personal page. A personal 
page might be less credible. 

Finding out who the author is, their 
credentials, and the organization 
they are associated with will help 
to determine whether they are 
qualified to write about the topic. 

An article that includes citation of 
resources is often more credible. 
Take the time to evaluate a few 
of the cited resources as well. 

Relevance Students should examine the content 
of a source (the evidence) to ensure 
it supports their claims and provides 
insight and knowledge that relates to the 
topic. This means that evidence is only 
relevant when it addresses both the topic 
in context and the student’s argument.

Because we are investigating computing 
innovations that are rapidly changing, 
it is important to consider if the 
information being provided is the 
most recent and current. This means 
students should make sure they are 
addressing the current version of the 
computing innovation, as well as the 
most recent published information.

An article describing the spacious 
seating area of the Google self-driving 
car may not be relevant in supporting a 
claim regarding the safety of the vehicle. 

An article about version 4 of a  
computing innovation might not be 
relevant when the current  
version is version 8. 

Supporting Claims with Evidence

As students investigate computing innovations, they are required to provide evidence 
for claims made as part of those investigations. Acknowledgments of the evidence 
and claims must be made through in-text citations and listing the sources of the 
citations as references. Whenever students are conducting their investigations or 
creating computational artifacts, students are required to acknowledge their sources. 
They are also required to acknowledge program code segments that they did not 
write themselves, including open-source program code segments, as well as any 
student conclusion that is supported by data sets, articles, books, and other sources.

When providing instruction on acknowledging sources, teachers should instruct 
students as follows:

▶ Text-based sources: Students should properly acknowledge sources that are used 
to provide evidence in their written responses through in-text citations, especially 
when quoting directly from a source. Using phrases such as “according to” and 

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

43AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

“as seen in” or using direct quotes with parenthetical citation would be considered 
acceptable means of acknowledging sources as well as a way for students to build 
credibility. Although there is no specific citation style required in AP Computer 
Science Principles course, MLA, APA, or IEEE would be appropriate to use for a 
works-cited page.

▶ Program code: Students should properly acknowledge program code they did not 
explicitly write, such as APIs, open-source program code, or program code provided 
during peer-to-peer collaboration. Open source refers to access and licensing of 
program code that is publicly available for use or modification. One way students 
can acknowledge someone else’s program code is by adding a comment either to 
the program code or to the documentation, crediting the author and listing where 
the program code was found. This includes program code that may have been 
written together as part of whole-class instruction.

 ▶ Media: Students should acknowledge any external media used in the creation of 
their computational artifacts. External media includes: images, music and other 
media that are not original student work. This media can be acknowledged on the 
computational artifact itself, in a credits section, or in a works-cited page.

Creative works and innovations often become intellectual property of the creators 
or owners and require acknowledgment. Failure to acknowledge the ideas and 
works of others is considered plagiarism. Teachers should inform students of 
the consequences of plagiarism and instruct students to ethically acknowledge, 
attribute, and cite the ideas and work of others. A student who fails to acknowledge 
the source or author of any and all information about existing program code or 
a computing innovation should be provided with feedback on a proper way to 
credit sources.

Creating Computational Artifacts

To prepare students to successfully complete the through-course performance 
tasks, as well as to create more authentic learning experiences, ample time should 
be spent in the practice of creating computational artifacts. A computational artifact 
is a visualization, a graphic, a program, a video, or an audio that students create 
using a computer. The computational artifact could solve a problem, show creative 
expression, or provide a viewer with new insight or knowledge.

When creating computational artifacts, teachers should encourage students to 
think outside of traditional means for communicating ideas (e.g., PowerPoint 
presentations); students should be steered toward more creative avenues.

The following are some examples of creative computational artifacts:

 ▶ Promotional materials, a song, or a video commercial that could be used to advertise 
the function or purpose of a new computing innovation

 ▶ An educational tutorial, an online book, or a program that teaches a younger 
student about something related to computer science

 ▶ A public service announcement or poster denouncing cyberbullying

 ▶ An infographic that presents and compares data related to social media



44
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

To guide students in conducting computer science investigations (e.g., investigating 
solutions to a problem, conducting data analysis, or analyzing computing innovations) 
and in creating computational artifacts, teachers can use the following strategies:

 ▶ Modeling an iterative development process for planning and creating computational 
artifacts.

 ▶ Using graphic organizers, such as KWHL charts and vocabulary organizers, when 
reading about current events, new technologies, or computer-based solutions to 
problems. A KWHL chart shows: what students Know; what they Want to know; 
How they will find information; and what they have Learned.

▶ Modeling some of the available tools that can be used to create computational 
artifacts including programs.

▶ Scaffolding performance tasks by providing students with the opportunity to 
practice completing mock performance tasks that have an authentic purpose and 
audience. These mock performance tasks can be shorter in length, focus on different 
requirements than the actual performance tasks, and allow students to demonstrate 
a transfer of knowledge learned.

 ▶ Utilizing cooperative learning strategies and providing students with many 
opportunities to participate in learning activities while creating computational 
artifacts for a more authentic experience.

 ▶ Having students practice using pair programming when collaborating to write a 
program and having students reflect on this process.

Development Process

The organizational approaches in the table earlier in this section include instruction 
that facilitates students’ use of a process to plan and create computational artifacts. 
Some traditional process plans that emphasize computational thinking practices 
include the software-development lifecycle and the engineering-design process. 
Planning processes are iterative and cyclical in nature and require students to 
reflect on what they have created. If necessary, students return to prior stages to 
modify their plans and change their development.

The following elements can be integrated within a development process to plan and 
create computational artifacts. These elements are included in both the software-
development lifecycle and the engineering-design process. Throughout the use of 
any design process, students will be using the computational thinking practice of 
collaborating.

▶ Investigate – In this phase, students explore the computational thinking practice 
of analyzing problems and artifacts while they define the problem that needs to be 
solved.

 Plan – In this phase, students implement the computational thinking practices of 
creating computational artifacts and abstraction. Teachers can use strategies such 
as create a plan, identify a subtask, look for a pattern, and mark the text to help 
students understand the problem they need to solve.

▶

▶ Design – In this phase, students create a visual representation or model of their 
solution and decide which tools can be used to solve the problem. They use the 
computational thinking practice of creating computational artifacts as they select 
appropriate techniques to develop their solution.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

45AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

 ▶ Create/Implement – In this phase, students use the computational thinking 
practice of collaborating to implement their plan.

 ▶ Evaluate/Test – In this phase, students use the computational thinking practices 
connecting computing and analyzing problems and artifacts. Teachers can use 
strategies such as predict and compare and error analysis to determine whether 
the solution is appropriate and the potential impact of the computing innovation. 
This phase may require students to revisit some of the earlier phases in the 
development to make improvements on their product.

 ▶ Document – In this phase, students implement the computational thinking 
practice of communicating. When creating computational artifacts, this phase 
allows students to describe their process and add comments to program code. 
Students could keep a journal or log book to note design decisions and rationales. 
This allows students to come back to a computational artifact later and recall how 
it was constructed. This is helpful when modifications need to be made to the 
computational artifact.

The elements listed above need not be implemented in linear order. Students may 
choose to return to earlier phases as their design ideas change and develop.

The following graphic illustrates the iterative and cyclical nature of a development 
process to plan and create computational artifacts.

Investigate
Define the
problem

Plan
Understand
the problem

Document
Create comments

to clarify your
project

Design
Create a visual
representation

 Decide on tool

Evaluate / Test
Determine if the

solution is
appropriate

Create /
Implement
Implement the

plan



46
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

linking Computational Thinking 
Practices and learning Objectives
The following table provides examples of how to connect computational thinking 
practices to the learning objectives, along with suggested instructional strategies 
for teaching these learning objectives.

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Connecting computing  
[P1]

lO 3.2.1 Extract 
information from data 
to discover and explain 
connections or trends.

 ▶ Describe the data that
is being collected.

 

 ▶ What questions can 
be answered through 
analysis of this data?

 ▶ How is data 
being used by 
the government, 
businesses, and 
individuals?

Programming and 
problem-solving strategies 

▶ Look for a pattern

Cooperative learning

▶ Discussion group

▶ Student response 
system

▶ Think-pair-share

 ▶ Turn to your partner

Making connections

▶ Activate prior 
knowledge

lO 4.2.1 Explain the 
difference between 
algorithms that run in 
a reasonable time and 
those that do not run 
in a reasonable time.

lO 4.2.2 Explain the 
difference between solvable 
and unsolvable problems 
in computer science.

lO 4.2.3 Explain 
the existence of 
undecidable problems 
in computer science.

 ▶ Describe the problem 
in your own words.

▶ How efficient would 
a computing solution 
be for this problem?

 ▶ Why is the computer
the correct tool to 
use when solving 
this problem?

 

▶ What would the 
estimated run time be 
to solve this problem?

Programming and 
problem-solving strategies

▶ Predict and compare

 ▶ Think aloud

Cooperative learning

 ▶ Discussion group

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

47AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Connecting computing 
[P1]

(continued)

lO 5.5.1 Employ 
appropriate mathematical 
and logical concepts 
in programming.

 ▶ What pattern do you 
see in the data?

 ▶ How can we 
simplify the process 
through the use 
of an equation?

▶ What equation 
would be needed to 
find the solution?

Programming and 
problem-solving strategies 

 ▶ Create a plan

▶ Identify a subtask

▶ Modeling

▶ Predict and compare

 ▶ Simplify the problem

 ▶ Think aloud

Cooperative learning

 ▶ Student response 
system

▶ Think-pair-share

 ▶ Turn to your partner

▶ Use manipulatives

lO 6.3.1 Identify existing 
cybersecurity concerns 
and potential options 
to address these issues 
with the Internet and 
the systems built on it.

 ▶ What are the risks 
faced when using 
the Internet?

 ▶ What privacy and 
security concerns 
should we be 
aware of?

▶ How can you 
protect yourself 
on the Internet?

▶ How does the Internet 
change the way we 
connect with others?

Cooperative learning

 ▶ Discussion group

 ▶ Online tools for 
collaboration

 ▶ Think-pair-share

 ▶ Turn to your partner

Making connections

▶ Activate prior 
knowledge



48
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Connecting computing 
[P1]

(continued)

lO 7.2.1 Explain how 
computing has impacted 
innovations in other fields.

lO 7.4.1 Explain the 
connections between 
computing and real-
world contexts, including 
economic, social, and 
cultural contexts.

lO 7.5.1 Access, manage, 
and attribute information 
using effective strategies.

 ▶ Who does this 
computing 
innovation affect?

▶ How are they affected?

▶ Would the effect be 
social, economic, 
or cultural? Justify 
your response.

▶ What are the potential 
beneficial and 
harmful effects of this 
computing innovation? 

 ▶ How has this 
computing innovation 
changed our lives 
socially, economically, 
and culturally? 
How will it?

▶ What advanced search 
parameters can be 
employed to narrow 
search results?

 ▶ What are the benefits 
of acknowledging 
sources?

▶ What is the proper 
way to acknowledge 
various sources used 
in written responses? 
In programming 
code? In artifacts?

Cooperative learning

 ▶ Discussion group

 ▶ Online tools for 
collaboration

 ▶ Think-pair-share

 ▶ Turn to your partner

Making connections

▶ Activate prior 
knowledge

▶ KWHL chart

 ▶ Paraphrase

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

49AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Creating computational 
artifacts [P2]

lO 1.1.1 Apply a 
creative development 
process when creating 
computational artifacts.

lO 1.2.1 Create a 
computational artifact 
for creative expression.

lO 1.2.2 Create a 
computational artifact 
using computing tools 
and techniques to 
solve a problem.

lO 1.2.3 Create a new 
computational artifact by 
combining or modifying 
existing artifacts.

lO 1.3.1 Use computing 
tools and techniques for 
creative expression.

 ▶ Why would a 
computational solution 
be appropriate to 
solve this problem?

 ▶

▶

Which computational 
tools could we use?

 Which tool would 
be most appropriate 
and why?

Programming and 
problem-solving strategies 

▶ Create a plan

 ▶ Think aloud

Cooperative learning

 ▶ Discussion group

▶ Think pair share

▶ Turn to your partner

lO 2.2.1 Develop an 
abstraction when writing a 
program or creating other 
computational artifacts.

▶ Describe how we can
break this problem 
into smaller, more 
manageable pieces.

 Programming and 
problem-solving strategies 

▶ Code tracing

 ▶ Create a plan

 ▶ Error analysis

 ▶ Identify a subtask

▶ Look for a pattern

 ▶ Marking the text

 ▶ Modeling

▶ Simplify the problem

Cooperative learning

 ▶ Kinesthetic learning

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities



50
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Creating computational 
artifacts [P2]

(continued)

lO 4.1.1 Develop 
an algorithm for 
implementation 
in a program.

▶ What subtasks exist
for this problem?

 

▶ What steps would 
we follow to find 
the solution?

 ▶ What processes, if 
any, are repeated?

Programming and 
problem-solving strategies 

▶ Create a plan

 ▶ Identify a subtask

▶ Look for patterns

 ▶ Marking the text

 ▶ Modeling

 ▶ Simplify the problem

Cooperative learning

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

▶ Unplugged activities

lO 5.1.1 Develop a 
program for creative 
expression, to satisfy 
personal curiosity, or to 
create new knowledge.

lO 5.1.2 Develop a 
correct program to 
solve problems.

 ▶ What is the purpose 
of the program?

▶ Justify how a 
program would be an 
appropriate tool to 
solve the problem.

 ▶ What test cases can 
we use to determine
if our program 
code is correct?

 

 ▶ Describe how we 
can break this 
program into more 
manageable pieces.

Programming and 
problem-solving strategies 

 ▶ Code tracing

 ▶ Create a plan

 ▶ Identify a subtask

 ▶ Look for a pattern

 ▶ Marking the text

 ▶ Pair programming

 ▶ Simplify the problem

▶ Think aloud

 ▶ Work backward

Cooperative learning

 ▶ Student response 
system

 ▶ Think-pair-share

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

51AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Abstracting [P3] lO 2.1.1 Describe the 
variety of abstractions 
used to represent data.

lO 2.2.2 Use multiple 
levels of abstraction 
to write programs.

lO 2.2.3 Identify multiple 
levels of abstractions 
that are used when 
writing programs.

lO 2.3.1 Use models 
and simulations to 
represent phenomena.

lO 2.3.2 Use models 
and simulations to 
formulate, refine, and 
test hypotheses.

 ▶ Describe how data 
is represented in 
the computer.

 ▶ What algorithm can 
we use to convert 
between different 
number systems?

 ▶ Describe how bits 
are grouped to 
represent numbers, 
characters, and colors.

 ▶ Describe how you can 
make your code more 
generic and reusable by 
including procedures, 
parameters, or 
variables.

▶ Describe how the 
programmer made 
her or his program 
code more reusable by 
including procedures, 
parameters, or 
variables.

 ▶ What are some 
models or simulations 
that you know?

▶ Why are models and 
simulations important?

▶ Describe how a 
model or simulation 
uses abstraction.

Programming and 
problem-solving strategies 

 ▶ Code tracing

 ▶ Create a plan

 ▶ Identify a subtask

 ▶ Look for a pattern

▶ Marking the text

 ▶ Modeling

▶ Pair programming

 ▶ Simplify the problem

▶ Think aloud

Cooperative learning

▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Sharing and responding

 ▶ Student response 
system

▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

Making connections

 ▶ Activate prior 
knowledge

 ▶ Interactive word wall

 ▶ Note-taking

 ▶ Vocabulary organizer

lO 3.2.2 Determine 
how large data sets 
impact the use of 
computational processes 
to discover information 
and knowledge.

 ▶ What are some 
challenges when using
large data sets?

 

 ▶ Describe how this data 
analysis approach 
will need to change 
as the size of the 
data set expands.

Programming and 
problem-solving strategies 

▶ Create a plan

 ▶ Error analysis

▶ Look for pattern

 ▶ Modeling

 ▶ Predict and compare

 ▶ Simplify the problem

Making connections

 ▶ Paraphrase



52
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Abstracting [P3]

(continued)

lO 5.2.1 Explain how 
programs implement 
algorithms.

lO 5.3.1 Use abstraction 
to manage complexity 
in programs.

 ▶ What subtasks, if any, 
can you identify in 
this program code?

 ▶ Which sections of 
your program code 
can be grouped 
under one name? 
What would you 
name the sections?

 ▶ Identify the algorithms 
used in this program.

▶ Identify where 
abstraction is being
used in a program.

 

Programming and 
problem-solving strategies 

▶ Code tracing

 ▶ Create a plan

 ▶ Identify a subtask

 ▶ Look for a pattern

 ▶ Marking the text

▶ Modeling

 ▶ Pair programming

 ▶ Simplify the problem

 ▶ Think aloud

▶ Work backward

Cooperative learning

 ▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

lO 6.1.1 Explain the 
abstractions in the 
Internet and how 
the Internet functions.

 ▶ Describe how the 
Internet deals 
with the large 
diversity of devices 
connected to it.

 ▶ What system of 
protocols exists so 
that devices can 
communicate via 
the Internet?

 ▶ Describe how new 
devices are connected 
to the Internet.

Cooperative learning

 ▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

Making connections

 ▶ Interactive word wall

 ▶ KWHL chart

 ▶ Paraphrase

 ▶ Note-taking

 ▶ Vocabulary organizer

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

53AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Analyzing problems 
and artifacts [P4]

lO 1.2.5 Analyze 
the correctness, 
usability, functionality, 
and suitability of 
computational artifacts.

 ▶ What are the 
similarities and 
differences in the 
proposed solutions?

 ▶ Describe how one 
solution would 
be more efficient 
than another.

 ▶ When and why is 
efficiency important?

Programming and 
problem-solving strategies 

 ▶ Code tracing

 ▶ Error analysis

 ▶ Modeling

 ▶ Predict and compare

 ▶ Work backward

Cooperative learning

 ▶ Discussion group

 ▶ Sharing and 
responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

lO 3.1.1 Find patterns 
and test hypotheses 
about digitally processed 
information to gain 
insight and knowledge.

lO 3.3.1 Analyze how 
data representation, 
storage, security, and 
transmission of data 
involve computational 
manipulation of 
information.

 ▶ Describe how 
computers are used 
in data analysis.

 ▶ What are the 
different ways we 
can represent data?

 ▶ Compare different 
representations of the 
same set of data. What
patterns emerge?

 

 ▶ Determine whether 
the different 
representations 
are accurate.

 ▶ Compare the 
conclusions 
made by different 
representations.

Programming and 
problem-solving strategies 

 ▶ Look for a pattern

 ▶ Modeling

 ▶ Pair programming

 ▶ Predict and compare

Cooperative learning

 ▶ Discussion group

 ▶ Sharing and responding

 ▶ Think-pair-share

 ▶ Turn to your partner

Making connections

 ▶ Activate prior 
knowledge

 ▶ Online tools for 
collaboration

 ▶ Paraphrase



54
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Analyzing problems 
and artifacts [P4]

(continued)

lO 4.2.4 Evaluate 
algorithms analytically and
empirically for efficiency, 
correctness, and clarity.

 
 ▶ What input values 

will cause this 
algorithm to produce 
inaccurate results?

 ▶ What is another way 
to solve this problem? 
Compare the efficiency
of the two solutions.

 

 ▶ Compare multiple 
algorithms that 
produce the same 
result. How would 
the run times of each
algorithm vary?

 

 ▶ When does efficiency 
become important?

 ▶ What is the 
difference between 
a linear search and 
a binary search in 
terms of process 
and efficiency?

Programming and 
problem-solving strategies

 ▶ Error analysis

 ▶ Look for a pattern

 ▶ Modeling

 ▶ Predict and compare

 ▶ Simplify the problem

 ▶ Work backward

Cooperative learning

 ▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

▶ Use manipulatives

lO 5.4.1 Evaluate the 
correctness of a program.

 ▶ What test cases can 
be used to evaluate 
this program?

Programming and 
problem-solving strategies 

 ▶ Code tracing

 ▶ Error analysis

 ▶ Look for a pattern

 ▶ Modeling

 ▶ Predict and compare

 ▶ Simplify the problem

 ▶ Work backward

Cooperative learning

 ▶ Discussion group

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

55AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Analyzing problems 
and artifacts [P4]

(continued)

lO 6.2.2 Explain how 
the characteristics of the 
Internet influence the 
systems built on it.

 ▶ What design decisions 
were made when 
building the Internet?

 ▶ What is the role 
of redundancy on 
the Internet?

 ▶ Describe how 
information is sent 
via the Internet.

 ▶ Describe how size 
and speed of systems 
affect their use.

Cooperative learning

 ▶ Discussion group

▶ Kinesthetic learning

 ▶ Online tools for 
collaboration

 ▶ Sharing and responding

▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

Making connections

 ▶ Activate prior 
knowledge

 ▶ Interactive word wall

 ▶ KWHL chart

 ▶ Note-taking

▶ Paraphrase

 ▶ Vocabulary organizer

lO 7.1.1 Explain how 
computing innovations 
affect communication, 
interaction, and cognition.

lO 7.1.2 Explain how 
people participate in 
a problem-solving 
process that scales.

lO 7.3.1 Analyze the 
beneficial and harmful 
effects of computing.

▶ Describe how 
current forms of 
communication 
have changed, 
both positively and 
negatively, the way 
we interact with 
one another.

 ▶ Describe how data is 
being used. How is it 
being used positively? 
Negatively?

▶ Describe how we are 
using technology to 
foster collaboration. 
Give an example.

 ▶ What is the legal way 
to leverage open-
source material?

Cooperative learning

▶ Discussion group

 ▶ Online tools for 
collaboration

 ▶ Sharing and responding

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Use manipulatives

Making connections

 ▶ Activate prior 
knowledge

▶ KWHL chart

 ▶ Paraphrase



56
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Communicating [P5] lO 2.1.2 Explain how 
binary sequences are used 
to represent digital data.

 ▶ Describe how the use 
of data is limited.

 ▶ What can we use 
bits to represent?

Cooperative learning

 ▶ Discussion group

 ▶ Online tools for 
collaboration

 ▶ Sharing and responding

 ▶ Think-pair-share

▶ Turn to your partner

Making connections

 ▶ Activate prior 
knowledge

 ▶ Interactive word wall

 ▶ KWHL chart

 ▶ Note-taking

 ▶ Paraphrase

 ▶ Vocabulary organizer

lO 3.1.3 Explain the insight 
and knowledge gained 
from digitally processed 
data by using appropriate 
visualizations, notations, 
and precise language.

 ▶ What data can be 
used to support 
your claims?

 ▶ What are the different 
visual ways we can 
represent this data?

 ▶ Which representation 
would be most 
effective in 
communicating 
your findings and 
conclusions?

Programming and 
problem-solving strategies

▶ Modeling

Cooperative learning

 ▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Online tools for 
collaboration

 ▶ Sharing and responding

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use of manipulatives

Making connections

 ▶ Activate prior 
knowledge

 ▶ Paraphrase

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

57AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Communicating [P5]

(continued)

lO 4.1.2 Express an 
algorithm in a language.

 ▶ What are some of 
the ways that we can 
express an algorithm?

 ▶ Which algorithm 
language should we 
use to express an 
algorithm? Justify 
your answer.

Programming and 
problem-solving strategies 

 ▶ Create a plan

 ▶ Marking the text

 ▶ Modeling

▶ Think aloud

Cooperative learning

 ▶ Discussion group

 ▶ Kinesthetic learning

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Unplugged activities

 ▶ Use manipulatives

Making connections

▶ Activate prior 
knowledge

lO 6.2.1 Explain 
characteristics of 
the Internet and the 
systems built on it.

 ▶ What are the 
different parts of a 
domain name?

 ▶ What are the different 
parts of an IP address?

Cooperative learning

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

 ▶ Use manipulatives

Making connections

 ▶ Activate prior 
knowledge

▶ Interactive word wall

 ▶ KWHL chart

 ▶ Note-taking

 ▶ Vocabulary organizer



58
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Communicating [P5]

(continued)

lO 7.5.2 Evaluate online 
and print sources 
for appropriateness 
and credibility.

▶ How is the information 
in the resource 
relevant to your 
investigation?

 ▶ Justify whether 
or not the content 
is accurate.

▶ What is the 
perspective of 
the author?

▶ What bias did the 
author have when 
writing this source?

▶ What makes this 
source credible?

 ▶ To what extent was the 
author able to observe 
or have access to 
credible evidence?

 ▶ What is the purpose 
of the website?

▶ What authorship 
clues does the 
URL provide (e.g., 
.com, .edu, .gov)?

 ▶ What are the 
qualifications of the 
author or group that 
created the website?

 ▶ When was the 
website last revised, 
modified, or updated?

 ▶ Is the website well 
maintained?

 ▶ What is your opinion 
of the appearance 
of the website?

Investigation

 ▶ Discussion group

 ▶ Graphic organizer

▶ Modeling

▶ Paraphrase

 ▶ Prompting

 ▶ Think aloud

 ▶ Think-pair-share

 ▶ Turn to your partner

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

59AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Computational 
Thinking Practices

Where the 
Computational 
Thinking Practice 
Is Addressed in 
the Curriculum 
Framework

Questioning and 
Instructional Cues

Instructional 
Strategies
(Descriptions of these 
strategies can be found 
on pages 61–64.)

Collaborating [P6] lO 1.2.4 Collaborate 
in the creation of 
computational artifacts.

 ▶ Describe how you plan
to divide your work.

 

 ▶ Who will be 
responsible 
for completing 
which pieces?

 ▶ Describe how you 
will share your 
work during the 
collaborative process.

 ▶ Describe how you 
will balance the 
use of resources.

Programming and 
problem-solving strategies 

 ▶ Create a plan

 ▶ Identify a subtask

Cooperative learning

 ▶ Discussion group

 ▶ Online tools for 
collaboration

 ▶ Sharing and responding

 ▶ Think-pair-share

▶ Turn to your partner

Making connections

▶ Paraphrase

lO 3.1.2 Collaborate 
when processing 
information to gain 
insight and knowledge.

 ▶ Describe how you plan 
to divide your work.

▶ Who will be 
responsible 
for completing 
which pieces?

 ▶ Describe how you 
will share your 
work during the 
collaborative process.

 ▶ Describe how you 
will balance the 
use of resources.

Cooperative learning

 ▶ Discussion group

▶ Online tools for 
collaboration

 ▶ Sharing and responding

▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

Making connections

▶ Paraphrase

lO 5.1.3 Collaborate to 
develop a program.

 ▶ Describe how you plan 
to divide your work.

 ▶ Who will be 
responsible 
for completing 
which pieces?

 ▶ Describe how you 
will share your 
work during the 
collaborative process.

 ▶ Describe how you 
will balance the 
use of resources.

Programming and 
problem-solving strategies

 ▶ Create a plan

 ▶ Error Analysis

 ▶ Identify a subtask

 ▶ Modeling

 ▶ Pair programming

Cooperative learning

 ▶ Discussion group

▶ Online tools for 
collaboration

 ▶ Sharing and responding

 ▶ Student response 
system

 ▶ Think-pair-share

 ▶ Turn to your partner

Making connections

 ▶ Paraphrase



60
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Representative Instructional Strategies

The table below contains suggested instructional strategies that can be used when 
teaching computer science. Instructional strategies have been categorized based 
on whether they are used to teach programming or problem solving, are suitable for 
cooperative learning, are helpful for students to make connections between material 
being presented and prior knowledge of topics covered, or provide guidance for 
teaching students how to conduct investigations.

Category
Instructional 
Strategy Definition

Application to Computer 
Science Principles

Programming 
and problem-
solving 
strategies

Code tracing Students step through program 
code by hand to determine how a 
piece of program code operates.

These strategies are intended 
to help students manage 
tasks, encourage students to 
persevere in the development 
of a program, and build 
students’ confidence as 
the types of problems 
they are asked to solve 
become more complex.

 ▶ Students can do pair 
programming as a means 
for collaboration. One 
way to conduct pair 
programming is to have 
students switch roles 
every 20 minutes.

▶ Teachers can use identify 
a subtask to help students 
break programs into 
procedures. This is an 
ideal situation to teach the 
incorporation of abstraction 
into programming.

▶ Having students look for 
a pattern, work backward, 
simplify the problem, 
create a plan, mark the 
text, and think aloud are 
all useful for students 
who are having difficulty 
approaching a problem.

▶ A critical part of learning 
to successfully create 
programs is for students 
to learn how to use error 
analysis and code tracing 
to determine if there are 
any issues with their 
programs. Students can 
practice by collaborating 
with a peer and examining 
the program code of a peer.

 ▶ Students can also check 
their program code by 
using predict and compare 
to see if their program 
code works as anticipated.

Create a plan Students analyze the tasks in a problem 
and create a process for completing 
the tasks by finding the information 
needed, interpreting data, choosing 
how to solve a problem, communicating 
results, and verifying accuracy.

Error analysis Students analyze an existing 
solution to determine whether 
(or where) errors have occurred.

Identify a  
subtask

Students break a problem 
into smaller pieces whose 
outcomes lead to a solution.

Look for a 
pattern

Students observe trends by organizing 
data or creating representations.

Marking the text Students highlight, underline, and/
or annotate text to focus on key 
information to help understand 
the text or solve the problem.

Modeling A teacher demonstrates a new concept 
or approach to learning during which 
students learn by observing.

Pair 
programming

Two programmers work together as a 
pair. One (the driver) writes program 
code, while the other (the observer, 
pointer, or navigator) reviews each 
line of program code as it is typed in.

Predict and 
compare

Students make conjectures about 
what results will develop in an 
activity, confirming or modifying the 
conjectures based on outcomes.

Simplify the 
problem

Students use friendlier numbers 
to solve a problem.

Think aloud Students talk through a difficult problem 
by describing what the text means.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

61AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Category
Instructional 
Strategy Definition

Application to Computer 
Science Principles

Programming 
and problem-
solving 
strategies

(continued)

Work backward Students trace a possible answer 
back through the solution 
process to the starting point.

 ▶ Teachers can use 
modeling as a way of 
demonstrating how to 
construct algorithms and 
solve problems. They can 
also model a think aloud 
and vocalize their thought 
process for students.

Cooperative 
learning

Discussion group Students engage in an interactive, 
small-group discussion.

Cooperative learning is an 
educational approach that aims 
to organize classroom activities 
into academic and social 
learning experiences. Many of 
these strategies can be used 
together to create a cooperative 
learning environment for 
increased student learning 
and engagement.

 ▶ kinesthetic learning and 
unplugged activities can 
be effective ways to help 
students understand what 
they cannot see happening 
inside a computer. Student 
learning and engagement 
can be increased through 
acting out the way a 
computer operates.

 ▶ Using think-pair-share and 
turn to your partner are 
helpful strategies when 
reviewing information 
from a prior day’s 
lesson as well as when 
connecting new material 
to existing knowledge.

 ▶ Teachers can use a 
student response system 
to conduct formative 
assessments and receive 
feedback from students.

Kinesthetic 
learning

The learner’s body movements are used 
to create knowledge or understanding 
of a new concept. A kinesthetic–tactile 
learning style requires students to 
manipulate or touch materials to learn.

Sharing and 
responding

Students communicate with 
another person or a small group 
of peers who respond to a 
proposed problem or solution.

Student 
response system

Students use a classroom response 
system or other means of electronic or 
nonelectronic communication to send 
answers or information in response 
to a teacher’s question or request.

Think-pair-share Students think through a problem alone, 
pair with a partner to share ideas, and 
then share results with the class.

Turn to your 
partner

Students share a formulated 
individual response with a partner.

Unplugged 
activities

Students use engaging games and 
puzzles that use manipulatives and 
kinesthetic-learning activities.

Use 
manipulatives

Students use objects to 
examine relationships between 
the information given.



62
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Category
Instructional 
Strategy Definition

Application to Computer 
Science Principles

making 
connections

Activate prior 
knowledge

The teacher provides students an 
opportunity to recall what they already 
know about a concept and make 
connections to current studies.

Providing students an 
opportunity to make sense 
of computer science terms 
is essential, especially if the 
terms are new to students.

▶ Teachers can use scaffolding 
and activate prior knowledge 
to provide students with 
a base on which to build 
their knowledge. Teachers 
can scaffold learning 
to reinforce topics and 
deepen knowledge.

▶ The use of graphic 
organizers such as kwHl 
charts and vocabulary 
organizers as well as note-
taking and interactive word 
walls can be very beneficial 
strategies in building 
students’ vocabulary.

 ▶ When reading current 
event articles, teachers 
can use a kwHl chart to 
help students connect 
what they are reading to 
what they already know 
about a technology.

▶ Teachers can asks students 
to paraphrase information 
they have read about a 
computing innovation.

Interactive
word wall

 Students use an interactive visual 
display of vocabulary words as a 
constant reminder of words and groups 
of words as they are introduced, used, 
and mastered over the course of a year.

KWHL chart Students use a graphic organizer 
that allows them to activate prior 
knowledge by identifying what they 
know, identifying what they want 
to know, identifying how they will 
acquire this knowledge and reflecting 
on what they have learned.

Note-taking Students create a record of information
while listening to a speaker.

 

Paraphrase Students restate in their own words 
essential information expressed in text.

Vocabulary 
organizer

Students use a graphic organizer 
with a designated format to maintain 
an ongoing record of vocabulary 
words with definitions, pictures, 
notation, and connections.

Investigation Discussion  
group

Students engage in an interactive, 
small-group discussion.

Students will be required to 
conduct computer science 
investigations on solutions 
to problems, data analysis, 
or analyzing computing 
innovations and need to 
develop the skills required 
to evaluate sources as 
credible and relevant. 
These strategies can assist 
students in determining 
the credibility of sources.

▶ Teachers can use online 
tools for collaboration and 
sharing and responding to 
help facilitate discussion 
groups while researching 
solutions to problems 
and analyzing data 
and information.

▶ Teachers can use 
modeling and a think 
aloud to demonstrate 
for students how to 
evaluate the reliability and 
credibility of a source.

Online tools for 
collaboration

Students use online resources that 
allow them to participate in discussions 
and collaborate on a common project. 
This is helpful in facilitating the 
division of assigned work among 
partners or groups of students.

Graphic 
organizer

Students use a visual representation 
for the organization of information.

Modeling A teacher demonstrates a new concept 
or approach to learning during which 
students learn by observing.

Paraphrase Students restate in their own words 
essential information expressed in text.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

63AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Category
Instructional 
Strategy Definition

Application to Computer 
Science Principles

Investigation

(continued)

Prompting Students use written prompts as a guide 
to systematically look for evidence 
that supports or refutes key claims.

▶ Teachers can provide a 
graphic organizer to help 
students discern a source’s 
credibility based on a list of 
criteria about the source.

 ▶ Teachers can use 
cooperative learning 
techniques such as 
discussion group, think-
pair-share, and turn to 
your partner to build 
student understanding 
when validating sources.

 ▶ Teachers can use 
prompting to provide 
students with a problem 
or purpose for their 
investigations and scaffold 
performance tasks.

 ▶ Teachers can ask students to 
paraphrase to ensure they 
understand the problem 
or desired need and are 
not distorting information 
based on their own biases.

Think aloud Students talk through a difficult problem 
by describing what the text means.

Think-pair-share Students think through a problem alone, 
pair with a partner to share ideas, and 
then share results with the class.

Turn to your 
partner

Students share a formulated 
individual response with a partner.

linking Course Concepts and Strategies
This section highlights some of the computational thinking practices and big ideas 
that are fundamental to the study of computer science by providing strategies that 
will help engage and motivate students.

Using Strategies for Collaboration

Collaboration is clearly an important part of this course — it is, after all, one of 
the computational thinking practices. During the development of computing 
innovations, collaboration allows computer scientists to improve their products. 
Collaboration takes place in a variety of ways: 

 ▶ brainstorming ideas and solutions in a team environment;

 ▶ working together to design subtasks of a larger project, developing these subtasks, 
and then integrating them in the completion of the project; 

▶ providing feedback on a computational artifact, including a program,to improve the 
overall quality; and 

 ▶ providing technical support when problems arise that an individual is struggling to 
solve on their own. 

Students will need many opportunities to practice collaboration throughout the 
course, especially as they consider different collaborative methods that will help 
them complete the Create — Applications from Ideas performance task.



64
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Some effective ways to incorporate collaboration in your classroom include:

▶ The cooperative learning strategies that are outlined in the instructional strategies 
table above can be used to help foster collaborative relationships in the classroom. 
Having an established protocol for students to have equal participation and share 
their ideas, such as the think-pair-share strategy, builds students’ confidence and 
can create a successful collaborative learning community within a classroom.

 ▶ Teachers should provide students with opportunities to work together to solve 
problems. River-crossing problems and critical thinking problem-solving questions 
can be solved collaboratively. It is useful to form student groups of two to three, 
assigning groups in various ways and mixing groups often. A strong emphasis 
should be placed on valuing and discussing contributions of ideas from all group 
members and obtaining consensus on the approach(es) to solving a problem. 

The following are examples of different forms of collaborating while programming:

 ▶ Collaboration may involve soliciting feedback from a collaborative partner at various 
points in their program development and providing feedback to a collaborative 
partner(s) at various points in their program development.

 ▶ Collaboration may involve each collaborative partner developing pieces of the 
program, combining those pieces, and providing feedback during the development 
process.

 ▶ Collaboration can take the form of brainstorming and sharing ideas before the 
process of writing program code begins. Collaborative partners can then choose to 
work together or independently at selected times during the programming process.

 ▶ Collaboration can take the form of working together to develop an idea, beginning 
the programming process together, and then working independently to add 
different features to the collaboratively developed portion of the program.

 ▶ Collaboration can employ pair programming, in which one collaborative partner 
“drives” (enters code) while the other “navigates” (recommends and reviews 
program code entered by driver), with the collaborative partners changing roles 
after designated time intervals. For multiday projects, teachers can have students 
rotate roles every 20–30 minutes. Smaller programming projects can be used as 
warm-up problems where students rotate roles with each warm-up.

▶ Collaboration can blend any or all of the above techniques and may include an 
iterative process in which one or more of these techniques, or other collaboration 
techniques, are employed several times in the program design, implementation, and 
testing phases.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

65AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

The illustrations below demonstrate steps in the software development life cycle 
and show two of many possible approaches:

1. Students may collaboratively work on a single program based on a single idea, 
iterating through the usual stages of the software development life cycle, and then 
separate to add their individual part to it.



66
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

2. Students may start out on their own, each generating independent ideas. Then, 
they can collaborate at different points during the development process.

The course emphasizes collaboration as a way for students to work with a partner 
to brainstorm solutions, successfully accomplish a task, and improve upon 
the quality of work. Learning to collaborate includes understanding different 
perspectives and approaches to solving problems. One way to assess how well 
students collaborate is by having them write reflections or participate in discussions 
about how collaborating with a partner helped accomplish their task or improve the 
quality of their computational artifact. Students should be asked to reflect not only 
on what went well in the collaboration process but also where they could improve 
it. Some partnerships require more intervention from the teacher than others. When 
a partnership is not working well, mediation and reflection can be helpful in getting 
the partnership back on track. The reflection should focus on a student’s own 
actions and how he or she works with others to solve problems. Teachers should 
guide students to share their reflections and consider different ways their work can 
be improved as they continue to collaborate.

Introducing Abstraction

The topic of abstraction takes on many forms for computer science. Abstraction 
occurs when we simplify a process by creating a generalization. It is seen in the way 
computers store data, with the lowest level being bits; seen in programs through 
the use of variables, procedures, and parameters; and used in simulations or models 
to isolate the features that need to be looked at more closely.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

67AP Computer Science Principles Course and Exam Description

Instructional Approaches
In

s
t

r
u

c
t

Io
n

a
l a

p
p

r
o

a
c

h
e

s

Abstraction can be categorized as either data abstraction or procedural abstraction.

 ▶ Data Abstraction: When students are introduced to the concept of data abstraction, 
it is hard for them to comprehend that everything stored on a computer is just bits. 
Their pictures, music, emails, and book reports are stored on a computer as bits. 
Teachers are encouraged to look up online resources that can be employed to help 
students understand how a computer works and stores data. To introduce students 
to the data abstraction, teachers can:

› have students read an article on how computers store data and use a 
making-connections strategy, such as activate prior knowledge, KWHL chart, 
or note-taking; and

› show students the ASCII chart that is used to map the characters on the 
keyboard to numbers and model how to encode messages using the decimal or 
octal equivalents for the letters.

Now that students have had an introduction to how data is stored, it is time they 
understand how the binary number system works. To accomplish this, teachers can:

› use the activate prior knowledge strategy to build on students’ existing 
knowledge of how the decimal number system works; and

› apply this knowledge of place value to building the place values for the binary, 
octal, and hexadecimal number systems.

 ▶ Procedural Abstraction: In terms of programming, an outcome of the use of 
procedural abstraction is program code that is more readable and reusable. 
Through the use of variables, algorithms, and procedures, program code is broken 
into subtasks that are more easily managed. To demonstrate this for students, 
teachers can:

 › use programming and problem-solving strategies such as simplify the problem, 
identify a subtask, or create a plan to break programs down into individual, 
reusable tasks;

 › have students practice the software design cycle to plan and develop a solution 
that includes abstraction;

 › have students think aloud, mark the text, and look for patterns (patterns often 
indicate the use of procedural abstraction);

 › use kinesthetic learning and unplugged activities, having students form 
groups to play a board game and identify the different abstractions in the forms 
of procedures and variables;

 › use modeling to demonstrate how to write procedures, continuing to model the
various levels of abstraction by adding parameters and variables;

 

 › provide students with example pieces of program code and have them use error 
analysis to identify the abstractions in the program code and then use the turn 
to your partner strategy;

› use code tracing or work backward to understand how the overall program 
interacts with its abstract components; and

› have students collaborate by use pair programming to improve provided 
program code by adding abstraction.



68
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Investigating Data and Information

Data and information are very important in the field of computer science. Many of our 
computer systems are heavily reliant on the collection and use of data to determine 
important information or new knowledge. It is what makes simulations more robust; 
for example, it is what ensures that you get the right coupons when checking out at the 
grocery store, and it is what helps you navigate through many of the apps on today’s 
technological devices. Much of this data is used in ways that mean it is transformed 
into information that can impact our everyday actions and transactions. Data is also 
often stored for potential future use. As students learn about the existence of data 
and how it can be used and transformed into information, their understanding can 
help them see the connection between computer science and other fields of study and 
careers. To help students understand this about data and information, teachers can:

 ▶ have students use KWHL charts to investigate the ways in which they generate 
data and make predictions as to how this data could be utilized;

▶ in discussion groups or with online tools for collaboration, have students read 
about and examine the possible uses of data in various fields, such as medicine, 
business, criminal justice, marketing, civil engineering, and municipal planning;

 ▶ have students generate and pose questions about a set of data, and then use 
sharing and responding to refine questions;

 ▶ have students use predict and compare and error analysis while analyzing data — 
this will help them identify anomalies within a data set; and

 ▶ use student response systems for students to generate their own data for analysis.

An important aspect of this course is the flexibility to use a variety of computing tools 
to teach many of the concepts in the curriculum framework. To provide students an 
opportunity to discover information and knowledge while working with data, teachers 
can use spreadsheets and other databases to analyze data. Teachers can also have 
students develop a program to process information from the data they have explored. 
The data and/or information can be used to create multiple representations, such as 
graphs, tables, diagrams, and even pictures and sounds. The different ways that the data 
and information can be represented can help to provide new insight or solve problems.

Teaching the Internet

The Internet is a global communication network that society has become 
very dependent on, but students are not necessarily aware of how it works. 
Characteristics of the Internet and cybersecurity issues are important aspects 
computer scientists consider when solving problem and creating software or new 
computing innovations. Teachers can consider using online resources to help 
students understand Internet protocol and allow them to explore the history and 
interworking of the Internet. To begin teaching the Internet, teachers can:

 ▶ use a making-connections strategy such as paraphrase or a vocabulary organizer 
to help students synthesize what they are reading in a technical text;

 ▶ use an interactive word wall to facilitate the learning of new Internet vocabulary;

 ▶ follow up any reading with discussion group or note-taking to ensure students of 
different reading abilities all have the correct information; and

 ▶ use manipulatives and kinesthetic-learning activities to illustrate how information 
is sent via packets through the Internet.

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s



Return to  
Table of Contents

© 2017 The College Board

69AP Computer Science Principles Course and Exam Description

Instructional Approaches

Additional Resources
The resources listed below provide additional information on some instructional 
strategies included in this course and exam description. The list also includes 
resources for the design and development of projects and programming code. 
Teachers can use and integrate information from resources when planning for 
instruction and are encouraged to investigate other appropriate resources as well. 

Classroom Instruction that works

Robert J. Marzano, Jana S. Marzano, and Debra J. Pickering. Classroom Instruction 
that Works: Research-based Strategies for Increasing Student Achievement. 2001. 
Association for Supervision and Curriculum Development.

Cer B. Dean, Elizabeth R. Hubbell, Howard Pitler, and Bj Stone. Classroom 
Instruction that Works: Research-based Strategies for Increasing Student 
Achievement. 2012. Association for Supervision and Curriculum Development.

Collaborative Development

“Collaborative Learning: Group Work.” Cornell University Center for Teaching 
Excellence. http://www.cte.cornell.edu/teaching-ideas/engaging-students/
collaborative-learning.html

“4 Methods to Enhance Student Collaboration in the Classroom.” Concordia 
Portland Online. http://education.cu-portland.edu/blog/reference-material/ 
4-methods-to-enhance-student-collaboration-in-the-classroom/

Computer Science Education

Computer Science Teachers Association Resources: http://www.csteachers.org/ 
?page=Resources

Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jellison Holme and Kim Nao. 
Stuck in the Shallow End: Education, Race, and Computing. 2010. The MIT Press.

Cooperative learning

David W. Johnson, Roger T. Johnson, and Edythe Johnson Holubec. “The New 
Circles of Learning: Cooperation in the Classroom and School.” 1994. Association 
for Supervision and Curriculum Development. http://www.ascd.org/publications/
books/194034/chapters/What-Is-Cooperative-Learning%C2%A2.aspx

Murphy, Laurie, Kenneth Blaha, Tammy VanDeGrift, Seven Wolfman, and Carol 
Zander. “Active and Cooperative Learning Techniques for The Computer Science 
Classroom.” Dec. 2002. Web. Dec. 2015. http://faculty.up.edu/vandegri/tenure/
papers/ccscnw02/p92-murphy.pdf

IN
S

T
R

U
C

T
IO

N
A

l A
P

P
R

O
A

C
H

E
S

http://www.cte.cornell.edu/teaching-ideas/engaging-students/collaborative-learning.html
http://www.cte.cornell.edu/teaching-ideas/engaging-students/collaborative-learning.html
http://education.cu-portland.edu/blog/reference-material/4-methods-to-enhance-student-collaboration-in-the-classroom/
http://education.cu-portland.edu/blog/reference-material/4-methods-to-enhance-student-collaboration-in-the-classroom/
http://www.csteachers.org/?page=Resources
http://www.csteachers.org/?page=Resources
http://faculty.up.edu/vandegri/tenure/papers/ccscnw02/p92-murphy.pdf
http://faculty.up.edu/vandegri/tenure/papers/ccscnw02/p92-murphy.pdf
http://www.ascd.org/publications/books/194034/chapters/What-Is-Cooperative-Learning%C2%A2.aspx
http://www.ascd.org/publications/books/194034/chapters/What-Is-Cooperative-Learning%C2%A2.aspx


70
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Instructional Approaches

Design and Development Process

“What Is the Software Development Life Cycle?” Official Blog Airbrake Bug Tracker. 
https://airbrake.io/blog/insight/what-is-the-software-development-life-cycle

“Engineering Design Process.” https://www.teachengineering.org/
engrdesignprocess.php

“The Engineering Design Process.” http://www.eie.org/overview/engineering-
design-process

Mohammed, Nabil, Ali Munassar, and A. Govardhan. “A Comparison Between Five 
Models of Software Engineering.” IJCSI International Journal of Computer Science 
7.5 (2010): 94-101. http://www.ijcsi.org/papers/7-5-94-101.pdf

kwHl Chart

“KWHL Chart.” KWHL Chart. http://www.graphic.org/kwhl.html

Pair Programming

Williams, Laurie, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. 
“Strengthening the Case for Pair Programming.” IEEE Software July/August (2000): 
19-25. IEEE Software. IEEE, July 2000. Web. Dec. 2015. http://collaboration.csc.
ncsu.edu/laurie/Papers/ieeeSoftware.PDF

Project Based learning

“What Is Project Based Learning (PBL)?” What Is PBL? http://bie.org/about/what_pbl

Prompting

“Strategy of the Week: Writing Prompts.” Education World 
http://www.educationworld.com/a_curr/strategy/writing_prompts.shtml

Understanding by Design

Grant P. Wiggins, Jay McTighe. Understanding by Design. 2005. Association for 
Supervision and Curriculum Development.

Open Source

“What Is Open Source?” Opensource.com. https://opensource.com/resources/what-
open-source

Open Source Initiative. http://opensource.org/ 

In
s

t
r

u
c

t
Io

n
a

l a
p

p
r

o
a

c
h

e
s

https://www.teachengineering.org/engrdesignprocess.php
https://www.teachengineering.org/engrdesignprocess.php
http://www.eie.org/overview/engineering-design-process
http://www.eie.org/overview/engineering-design-process
http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF


Return to  
Table of Contents

© 2017 The College Board

71AP Computer Science Principles Course and Exam Description

Assessment Overview

AP Computer Science Principles 
Assessment Overview
The AP Computer Science Principles course has three assessments consisting of 
two performance tasks and an end-of-course AP Exam. All of these assessments 
are summative and the scoring results from each will be used to calculate a final AP 
score using the 1–5 scale. Each assessment will count for a certain percentage of 
the total AP score, as shown in the table below. 

Assessment Timing Percentage of Total AP Score

Explore Performance Task  8 hours 16%

Create Performance Task 12 hours 24%

End-of-Course Exam  2 hours 60%

The AP Computer Science Principles through-course performance tasks allow 
students to demonstrate proficiency in course content and skills that cannot 
be assessed on the end-of-course AP Exam, such as creating a computational 
artifact. One of the tasks requires students to develop a program and the other 
to investigate a computing innovation and create a computational artifact that 
represents the computing innovation’s intended purpose, function, or its effect. 
A computing innovation is an innovation that includes a computer or program code 
as an integral part of its functionality. Student work will be submitted online to the 
College Board through the AP Digital Portfolio. Instructions for online submissions 
are available on the AP Computer Science Principles Course Home Page.

The AP Computer Science Principles End-of-Course Exam is 2 hours long. It is a 
paper and pencil exam and includes 74 multiple-choice questions. There are two 
types of multiple-choice questions:

 ▶ Single-select multiple-choice questions: Students select one answer from among 
four options.

 ▶ Multiple-select multiple-choice questions: Students select two answers from 
among four options.

The following overview provides general guidelines for the through-course 
performance tasks as well as the role of the teacher administering the tasks. 
A student version of the performance tasks appears in the Reproducibles for 
Students section. The student version includes guidelines and instructions for 
completing the performance tasks and should be distributed to students. The 
performance tasks can be completed in any order.

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



72
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview

Preparing for the Through-Course Performance Tasks

General Guidelines

Prior to beginning a performance task:

▶ Provide instruction and practice, along with feedback, related to content and skills 
that will help students succeed on the performance tasks (e.g., abstraction and 
algorithm development, various types of computing innovations, unfamiliar terms).

 ▶ Provide multiple opportunities to practice and discuss either the entire performance 
tasks or individual prompts of each of the tasks. Teachers should explain the role 
(described in the Overview of Performance Task sections for each performance task)
that they can play in providing assistance during the actual performance task; they 
should encourage students to take advantage of the opportunity to get assistance 
and feedback during practice.

 

 ▶ Review the scoring guidelines with students to help them understand how their 
work will be assessed. Teachers should remind students that the scoring guidelines 
are closely related with the prompts in the performance tasks, so they must respond 
to all of the prompts in their attempt to obtain the highest score possible.

▶ Provide examples of performance task submissions at high, medium, and low levels 
according to the scoring guidelines to understand the performance expectations. 
Examples of responses to each performance task can be found on AP Central. 
If students select a computing innovation or a program that has been used as an 
example or was discussed in class, students must find new sources and submit 
original responses to avoid plagiarism. Students cannot submit any work from 
AP Central samples or practice performance tasks for their final submission.

▶ Provide explicit instructions about the file submission requirements to the 
AP Digital Portfolio.

 ▶ Provide information regarding the evaluation and acknowledgment of a source 
including program code and media.

▶ Suggest a timeline and schedule for students to complete the performance tasks.

▶ Clarify the requirements and prompts in each performance task when students do 
not understand the directions.

AP Computer Science Principles Policy on Plagiarism

A student who fails to acknowledge (i.e., through citation, through attribution, 
by reference, and/or through acknowledgment in a bibliographic entry) the source or 
author of any and all information or evidence taken from the work of someone else will 
receive a score of 0 on that performance task.

To the best of their ability, teachers will ensure that students understand 
ethical use and acknowledgment of the ideas and work of others, as well as the 
consequences of plagiarism. The student’s individual voice should be clearly 
evident, and the ideas of others must be acknowledged, attributed, and/or cited.

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



Return to  
Table of Contents

© 2017 The College Board

73AP Computer Science Principles Course and Exam Description

Assessment Overview: Explore Performance Task

Performance Task: Explore –  
Impact of Computing Innovations 
Weight: 16% of the AP Computer Science Principles final score

Hours: a minimum of 8 class hours

Recommended Completion Date: April 15

Submission Deadline: April 30

Note: Teachers must carefully plan a calendar that provides time for all the tasks 
to be completed and uploaded by April 30. Student handouts of this performance 
task are available in the Reproducibles for Students section.

Task Overview

Computing innovations impact our lives in ways that require considerable study 
and reflection for us to fully understand them. In this performance task, students 
will explore a computing innovation of their choice. The close examination of a 
computing innovation will deepen the students’ understanding of computer science 
principles.

Components

The following components are formally assessed and must be submitted for the 
Explore performance task by April 30:

▶ Computational Artifact (CA)

 ▶ Written Responses (WR)

learning Objectives Assessed in Explore Performance Task

Learning Objectives for Explore Performance Task CA WR

1.2.1* Create a computational artifact for creative expression. [P2] X

1.2.2** Create a computational artifact using computing tools 
and techniques to solve a problem. [P2]

X X

3.3.1 Analyze how data representations, storage, security, and transmission 
of data involve computational manipulation of information. [P4]

X

7.1.1 Explain how computing innovations affect 
communication, interaction, and cognition. [P4]

X

7.3.1 Analyze the beneficial and harmful effects of computing. [P4] X

7.4.1 Explain the connections between computing and real-world 
contexts, including economic, social, and cultural contexts. [P1]

X

7.5.2 Evaluate online and print sources for appropriateness and credibility. [P5] X

    * Learning Objective 1.2.1 is assessed if students decide to create an artifact for the purpose of self-expression.

  ** Learning Objective 1.2.2 is assessed if students decide to create an artifact to solve a problem.

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



74
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview: Explore Performance Task

Task Guidelines

In this task, students select and investigate a computing innovation that has had 
or has impacts on society, economy, or culture, and consumes, produces, and/or 
transforms data. A computing innovation is an innovation that includes a computer 
or program code as an integral part of its function. Some examples of computing 
innovations include:

 ▶ physical computing innovations such as Google glasses and self-driving cars; and

▶ non-physical computing software (such as cell phone applications) or computing 
concepts (such as eCommerce), which rely on physical transactions conducted on 
the Internet.

As students analyze a computing innovation, they will explain its intended purpose 
or function, describe harmful and beneficial effects, describe data storage, data 
privacy, and data security concerns. Students will also produce a computational 
artifact that illustrates, represents, or explains the computing innovation’s intended 
purpose, its function, or its effect, and provide written responses to each of the 
given prompts.

There are a number of widely available computational tools students can use 
to create computational artifacts for this task. A computational artifact is a 
visualization, a graphic, a video, a program, or an audio recording that students 
create using a computer. The students’ creations could solve a problem, show 
creative expression, or provide the viewer with new insight or knowledge. Students 
must be able to attest that their computational artifact and written responses they 
are submitting are their own. Students can use work that is not originally created by 
them (including but not limited to images, video, or program code segments) as long 
as they provide appropriate acknowledgments.

Effective artifacts include:

▶ visual, graphical, and/or audio content to help a reader understand the purpose, 
function, or effect of a computing innovation; and

 ▶ the use of communications media, such as animations, comic strips, infographics, 
and/or public service announcements, to illustrate the purpose, function, or effect of 
a computing innovation.

Ineffective artifacts include:

▶ artifacts that repeat information supplied in the written responses;

▶ multislide presentations with paragraphs of text or bullets; and

▶ artifacts that have not been created by the student.

Students will demonstrate their understanding of computer science through the 
investigation and analysis of their chosen computing innovation (an innovation that 
has a computer or program code as an integral part of its function) and its impacts 
on the economy, society, and culture. Their investigations will be a thorough 
analysis of the function of the computing innovation based on its intended use. It 
is important for students to be able to explain the beneficial and harmful effects of 
the intended use of a computing innovation, as well as the characteristics of data 
input, data output, and data transformation that may occur with the computing 
innovation. In this way, students will make connections between important 

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



Return to  
Table of Contents

© 2017 The College Board

75AP Computer Science Principles Course and Exam Description

Assessment Overview: Explore Performance Task

computer science concepts and the impacts of the selected computing innovation. 
As students complete the Explore performance task, they must provide evidence 
of the extensive knowledge of computer science they have obtained throughout 
the course and through their investigations, and their responses should be 
understandable to someone who is unfamiliar with the computing innovation.

Written responses must be based on relevant, credible, and easily accessible 
sources. Students are required to provide in-text citations for at least three sources 
that helped them create their computational artifact and/or formulate their written 
responses. At least two of the sources must be available online or in print; the 
third source may be either online, in print, or a personal interview with an expert 
on the computing innovation. At least two of the sources must have been created 
after the end of the previous academic year. Students must avoid plagiarism by 
acknowledging, attributing, and/or citing sources throughout their responses 
and including a bibliography. Sources that should be acknowledged include text, 
images, video, music, graphs, and program code that are used in the creation of 
their computational artifacts.

Preparing for the Task

Teachers should:

 ▶ Discuss the criteria for a well-chosen computing innovation. A computing 
innovation is an innovation that includes a computer or program code as an integral 
part of its functionality. Inform students that a computing innovation that has a 
meaningful personal or community emphasis is an appropriate choice, as long as it 
fulfills all the requirements of the performance task.

▶ Provide instruction and multiple opportunities for students to practice searching 
and evaluating sources relevant to computing innovations. Students can search for 
print or nonprint sources as part of their investigation.

 ▶ Provide examples that appropriately illustrate or represents the purpose or function 
of the computing innovation.

 ▶ Guide students in clearly explaining the impact of a computing innovation on 
society, economy, and culture, clearly justifying both beneficial and harmful effects.

 ▶ Provide students with the meaning and purpose of creating a computational 
artifact. A computational artifact is a visualization, a graphic, a video, a program, or 
an audio recording that students create using a computer. The creation of an artifact 
could solve a problem, show creative expression, or provide the viewer with new 
insight or knowledge.

 ▶ Discuss the computational tools that can be used to create effective computational 
artifacts.

▶ Discuss computational artifacts that are effective and ineffective.

 ▶ Instruct students to complete an analysis of their computing innovation, including 
the impact the intended use of the computing innovation has on society, economy, 
or culture.

 ▶ Instruct students to demonstrate their knowledge of computer science and 
understanding of how data is input, output, and transformed in their analysis of the 
data used by the computing innovation.

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



76
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview: Explore Performance Task

 ▶ Instruct students to make connections between the data used by a computing 
innovation and a security, privacy, or storage concern. 

 ▶ Instruct students to ensure their written responses are based on relevant and 
credible sources. In addition, students should ensure appropriate in-text citation of 
sources being quoted in a written response. Students can acknowledge information 
they investigate from a journal, Web page, or expert that is being quoted as part of 
a written response.

▶ Instruct students to ensure appropriate acknowledgment of sources used in the 
creation of their computational artifact. Sources that should be cited include images, 
video, music, written works, graphs, and program code that are used in the creation 
of their computational artifact.

Administering the Task: Role of the Teacher

Teachers must:

 ▶ provide a minimum of 8 classroom hours to complete this performance task; and

▶ ensure students are aware of the performance task directions (found in the 
Reproducibles for Students section), timeline, and scoring criteria.

 ▶ allow students’ interests to drive their choice of computing innovation;

 ▶ assist in resolving technical problems that impede work, such as a failing 
workstation or difficulty with access to networks, or to help with saving files;

▶ wait until after students’ performance tasks have been completed and submitted as 
final to the AP Digital Portfolio before providing feedback on those tasks if they are 
being considered as part of the class grade;

 ▶ advise students that they may not revise their work once they have completed and 
submitted their work as final to the AP Digital Portfolio; and

▶ inform students they should be applying the computer science knowledge they’ve 
obtained throughout the course and in completing the performance tasks to their 
responses to all the prompts in the performance tasks.

Teachers may not:

 ▶ allow students to collaborate on the Explore performance task;

▶ assign, provide, or distribute specific topics to students;

▶ write, revise, amend, or correct student work;

▶ allow students to submit computational artifacts from practice performance tasks as 
a submission for AP scoring;

 ▶ conduct or provide research, articles, and/or evidence for students; or

▶ suggest answers or provide feedback on answers to prompts.

Teachers may:

▶ suggest a timeline and schedule for students for completing the performance task 
and monitor students’ progress;

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



Return to  
Table of Contents

© 2017 The College Board

77AP Computer Science Principles Course and Exam Description

Assessment Overview: Explore Performance Task

 ▶ clarify the requirements and prompts in each performance task when students do 
not understand the directions;

▶ designate consecutive or non-consecutive class hours to complete the performance task;

▶ continue whole class teaching of course content and skills during non designated 
time to complete the performance task;

▶ assist students in defining their focus and choice of topics prior to them 
beginning their investigation without making selections for them (e.g., by asking 
questions); students who select a program or computing innovation that was 
discussed in class must find new sources and submit original responses to avoid 
plagiarism. Students cannot submit any work from AP Central or from practice 
performance tasks.

▶ inform students that the scoring process that occurs in the AP Reading is different 
from the one that may be used in a classroom setting; the AP score that students 
receive may be different than their classroom grade. 

▶ review the files submitted to ensure the files are correct and not corrupted for each
performance task (i.e., check that the students uploaded the correct files for the 
Explore performance task and the correct files for the Create performance task).

 

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



Return to  
Table of Contents

© 2017 The College Board

79AP Computer Science Principles Course and Exam Description

Assessment Overview: Create Performance Task
A

S
S

E
S

S
m

E
N

T
 O

v
E

R
v

IE
w

Performance Task: Create – Applications From Ideas
Weight: 24% of the AP Computer Science Principles final score

Hours: a minimum of 12 class hours

Recommended Completion Date: April 15

Submission Deadline: April 30

Note: Teachers must carefully plan a calendar that provides time for all the tasks 
to be completed and uploaded by April 30. Student handouts of this performance 
task are available in the Reproducibles for Students section.

Task Overview

Programming is a collaborative and creative process that brings ideas to life 
through the development of software. Programs can help solve problems, enable 
innovations, or express personal interests. In this performance task, students will 
be developing a program of their choice. The students’ development process should 
include iteratively designing, implementing, and testing their program. Students are 
strongly encouraged to work with another student in their class.

Students completing the AP Computer Science Principles course in a nontraditional
classroom situation (e.g., online, homeschool, independent study) are permitted 
to collaborate with another secondary level student peer. However, a significant 
portion of the computer program must be developed independently. Students must 
provide program code segments that they developed independently as part of their
written response. Students must be able to attest to the originality of the program 
code and the written response they are submitting. Students can use program code
segments that are not originally developed by them provided they have included 
appropriate acknowledgment for these code segments.

 

 

 

There is no designated programming language for AP Computer Science Principles. 
Students may choose a programming language learned while taking this course 
to complete the task, or they may select a different programming language — one 
they are familiar with from outside of class. When selecting a programming 
language and their program focus, students should ensure that their program will 
be sophisticated enough to integrate mathematical and logical concepts, develop 
abstractions, and implement algorithms. 

Components

The following components are formally assessed and must be submitted for the 
Create performance task by April 30:

▶ A video of your program running (V)

 ▶ Individual written responses about your program and development process (IWR)

▶ Program code (PC)



80
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview: Create Performance Task

learning Objectives Assessed in Create Performance Task

Learning Objectives for Create Performance Task V IWR PC

2.2.1 Develop an abstraction when writing a program or 
creating other computational artifacts. [P2]

X X

4.1.1 Develop an algorithm for implementation in a program. [P2] X X

4.1.2 Express an algorithm in a language. [P5] X X

5.1.1* Develop a program for creative expression, to satisfy 
personal curiosity, or to create new knowledge. [P2]

X X X

5.1.2** Develop a correct program to solve problems. [P2] X X X

5.2.1 Explain how programs implement algorithms. [P3] X

5.3.1 Use abstraction to manage complexity in programs. [P3] X X

5.4.1 Evaluate the correctness of a program. [P4] X X X

5.5.1 Employ appropriate mathematical and logical 
concepts in programming. [P1]

X

  * Learning Objective 5.1.1 is assessed if students decide to create a program for the purpose of self-expression.

** Learning Objective 5.1.2 is assessed if students decide to create a program to solve a problem.

Task Guidelines

This performance task requires students to develop a program on a topic that 
interests them or solves a problem. It is strongly recommended that a portion of the 
program involve some form of collaboration with another student in their class in 
the planning, designing or testing (debugging) parts of the process. The program 
development must also involve a significant amount of independent work writing 
program code.

Students are required to:

▶ iteratively design, implement, and test their program;

 ▶ independently create at least one algorithm and one abstraction that are central to 
the purpose of the program and that can be used to meet the requirements for the 
written response;

▶ create a video that displays the running of their program and demonstrates its 
functionality;

▶ write responses to questions about their program to demonstrate their 
understanding of programming concepts; and

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



Return to  
Table of Contents

© 2017 The College Board

81AP Computer Science Principles Course and Exam Description

Assessment Overview: Create Performance Task

 ▶ submit their entire program code to the AP Digital Portfolio.

 ▶ submit their program code as a PDF file. If the program code is text based, students 
can use the print command to save their program code as a PDF file, or they can 
copy and paste the program code into a text document that can then be converted 
or saved as a PDF file. Students using a block-based programming language may 
need to use screen capture software to capture their code and paste it into a text 
document to then be converted into a PDF file. Students should capture clear 
images of only the program code.

▶ cite any program code they did not author. Program code can be cited by adding 
comments to the code. If the programming language does not allow for comments to 
be added directly to the program code, students should add them into the PDF file 
that contains their program code. 

In this task, students develop a program that demonstrates a variety of capabilities 
and implements several different language features that, when combined, 
produce a result that cannot easily be accomplished without computing tools and 
techniques. The program should draw upon mathematical and logical concepts, 
such as use of numbers, variables, mathematical expressions with arithmetic 
operators, logical and Boolean operators and expressions, decision statements, 
iteration, and/or collections. 

The program must demonstrate:

 ▶ use of several effectively integrated mathematical and logical concepts, from the 
language being used;

▶ implementation of algorithms that integrate other algorithms and mathematical 
and/or logical concepts; and

▶ development and use of abstractions to manage the complexity of their program 
(e.g., procedures, abstractions provided by the programming language, APIs).

Preparing for the Task

Teachers should:

▶ Brainstorm problems that programming can address, or brainstorm special interests 
that programming can help develop;

 ▶ Instruct students on an iterative development process. An example of the 
development process can be found in the Instructional Approaches section;

 ▶ Instruct students on the value of collaboration and different ways to collaborate 
with their peers;

▶ Work with students to analyze program code and code segments and explain the 
function as it relates to the overall program;

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



82
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview: Create Performance Task

 Encourage students to keep a programming journal of the design choices that were 
made during the development of the program code or code segment and the effect 
of these decisions on the programs function. Students can use this journal as a point 
of reference when they are demonstrating their understanding of how:

▶

› an algorithm was built as part of the integration of two or more algorithms;

› a program functions differently with the inclusion of algorithms and 
abstractions;

› the inclusion of an abstraction has made their program code more compact, 
readable or reusable and how the program would operate differently without 
the inclusion of the abstraction; 

▶ Instruct students to ensure appropriate acknowledgment of program code used 
in the creation of their computer program that is not their own. Any program 
code which has not been written by the student including the use of APIs, open-
source code, as well as code provided during peer-to-peer collaboration, should 
be acknowledged and credit should be given to the author. If the programming 
environment allows students to include comments, this is the preferred way 
to acknowledge and give credit to another author. In the case of programming 
environments which do not have this type of functionality, students can include 
comments when they capture their program code for submission. Provide guidance 
to student as to how they can use existing program code by integrating it into their 
own program code or extending it in some new way.

Administering the Task: Role of the Teacher

Teachers must:

▶ provide a minimum of 12 classroom hours to complete this task; and

▶ ensure students are aware of the performance task directions (found in the 
Reproducibles for Students section), timeline, and scoring criteria;

▶ allow students to collaborate during the development of the program code, if the 
student chooses to do so. During the development of the program, each student 
must develop their own abstraction(s) and algorithm(s) to be provided as part of 
their response;

▶ allow students’ interests to drive their choice of projects and programming language;

▶ assist in resolving technical problems that impede work, such as a failing 
workstation or difficulty with access to networks, or to help with saving files;

▶ wait until after students’ performance tasks have been completed and submitted as 
final to the AP Digital Portfolio before providing feedback on those tasks if they are 
being considered as part of the class grade;

 ▶ advise students that they may not revise their work once they have completed 
and submitted their work as final to the AP Digital Portfolio;

▶ inform students they should be applying the computer science knowledge they’ve 
obtained throughout the course and in completing the performance tasks to their 
responses to all the prompts in the performance tasks; and

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



83AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Assessment Overview: Create Performance Task

▶ instruct students how to capture their program code to submit for the performance 
tasks. 

› With text-based program code, students can use the print command to save their 
program code as a PDF file, or copy and paste their code to a text document and 
then convert it into a PDF file.

› With block-based program code, students can create clear screen captures that 
include only their program code, paste these images into a document, and then 
convert this document to a PDF file.

Teachers may not:

▶ assign, provide, or distribute to students specific topics or a program students are to 
develop;

▶ write, revise, amend, or correct student work, including debugging the program, 
writing or designing functionality in the program, testing the program, or making 
revisions to the program;

▶ allow students to submit computational artifacts from practice performance task as 
a submission for AP assessment scoring;

 ▶ suggest answers or provide feedback on answers to prompts; or

 ▶ allow students to collaborate during the creation of their video or completing 
written responses.

Teachers may:

 ▶ oversee the formation of groups;

▶ suggest a timeline and schedule for students for completing the performance task 
and monitor students’ progress;

 ▶ clarify the requirements and prompts in each performance task when it is clear 
students do not understand the directions;

▶ designate consecutive or non-consecutive class hours to complete the performance 
task;

▶ continue whole class teaching of course content and skills during non-designated 
time to complete the performance task;

▶ assist students in defining their focus and choice of topics prior to beginning their 
work without making selections for them (e.g., by asking questions);

 ▶ resolve collaboration issues where one collaborative partner is clearly and directly
impeding the completion of the performance tasks;

 

▶ inform students that the scoring process that occurs in the AP Reading is different 
from the one that may be used in a classroom setting; the AP score that students 
receive may be different than their classroom grade.

 ▶ review the files submitted to ensure the files are correct and not corrupted for each 
performance task (i.e., check that students uploaded the correct files for the Explore
performance task and the correct files for the Create performance task).

 

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



84
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Assessment Overview

AP Computer Science Principles End-of-Course Exam
Weight: 60% of the AP Computer Science Principles final score

Hours: 2 hours

Date: May (in the AP Exam administration window)

Note: The end-of-course exam will be administered using the same procedures and 
guidelines as all other AP Exams.

Overview

The AP Computer Science Principles End-of-Course Exam is composed of two types of 
multiple-choice questions:

▶ Single-select multiple-choice questions: Students select one answer from among 
four options.

▶ Multiple-select multiple-choice questions: Students select two answers from 
among four options.

Multiple-choice questions on the exam are classified according to learning 
objectives within each big idea in the AP Computer Science Principles curriculum 
framework. Some exam questions may be aligned to more than one learning 
objective. For example, a question on programming might implement an algorithm 
and contain abstractions. In any case, a primary learning objective is identified and 
is used to ensure the appropriate distribution of test questions in the AP Exam. The 
table below intends to show the approximate percentages of test question per big 
idea. Teachers should examine this table as one of many other important features of 
the course to plan their instruction.

Big Ideas
Approximate Percentage of 
Multiple-Choice Questions

Big Idea 1: Creativity ---

Big Idea 2: Abstraction 19%

Big Idea 3: Data and Information 18%

Big Idea 4: Algorithms 20%

Big Idea 5: Programming 20%

Big Idea 6: The Internet 13%

Big Idea 7: Global Impact 10%

The AP Computer Science Principles Exam Reference Sheet is found in the 
Reproducibles for Students section and provides programming instructions and 
explanations to help students understand questions they will see on the AP Exam.

A
S

S
E

S
S

m
E

N
T

 O
v

E
R

v
IE

w



85AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Sample Exam Questions
To elicit evidence of student achievement of the course learning objectives, exam 
questions assess both the application of the computational thinking practices 
and knowledge of the big ideas and enduring understandings. They may address 
content from more than one essential knowledge statement. Exam questions may 
be accompanied by nontextual stimulus material such as diagrams, charts, or other 
graphical illustrations. The sample questions that follow illustrate the relationship 
between the curriculum framework and the AP Computer Science Principles End-
Of-Course Exam and serve as examples of the types of questions that will appear 
on the assessment. Each question is accompanied by a table containing the 
enduring understandings, learning objective, computational thinking practices, 
and essential knowledge statements that the question addresses. The answers can 
be found in a table after the sample exam questions.



86
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

1. A video-streaming Web site uses 32-bit integers to count the number of times each video has 
been played. In anticipation of some videos being played more times than can be represented 
with 32 bits, the Web site is planning to change to 64-bit integers for the counter. Which of the 
following best describes the result of using 64-bit integers instead of 32-bit integers?

(A) 2 times as many values can be represented.

(B) 32 times as many values can be represented.

(C) 232 times as many values can be represented.

(D) 322 times as many values can be represented.

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

2.1 A variety of 
abstractions built upon 
binary sequences can 
be used to represent 
all digital data.

2.1.1 Describe the variety of 
abstractions used to represent 
data. [P3]

P3 Abstracting 2.1.1A

2.1.1B

2.1.1E

2. A programmer completes the user manual for a video game she has developed and realizes she 
has reversed the roles of goats and sheep throughout the text. Consider the programmer’s goal 
of changing all occurrences of “goats” to “sheep” and all occurrences of “sheep” to “goats.” The 
programmer will use the fact that the word “foxes” does not appear anywhere in the original text.

Which of the following algorithms can be used to accomplish the programmer’s goal?

(A) First, change all occurrences of “goats” to “sheep.” 
Then, change all occurrences of “sheep” to “goats.”

(B) First, change all occurrences of “goats” to “sheep.” 
Then, change all occurrences of “sheep” to “goats.” 
Last, change all occurrences of “foxes” to “sheep.”

(C) First, change all occurrences of “goats” to “foxes.” 
Then, change all occurrences of “sheep” to “goats.” 
Last, change all occurrences of “foxes” to “sheep.”

(D) First, change all occurrences of “goats” to “foxes.” 
Then, change all occurrences of “foxes” to “sheep.” 
Last, change all occurrences of “sheep” to “goats.”

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.1 Algorithms are 
precise sequences 
of instructions for 
processes that can be 
executed by a computer 
and are implemented 
using programming 
languages.

4.1.1 Develop an algorithm for 
implementation in a program. [P2]

P2 Creating 
computational artifacts 

4.1.1A

4.1.1B

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



87AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

3. ASCII is a character-encoding scheme that uses a numeric value to represent each character. 
For example, the uppercase letter “G” is represented by the decimal (base 10) value 71. A partial 
list of characters and their corresponding ASCII values are shown in the table below.

 ASCII characters can also be represented by hexadecimal numbers. According to ASCII 
character encoding, which of the following letters is represented by the hexadecimal (base 16) 
number 56?

(A) A

(B) L

(C) V

(D) Y

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

2.1 A variety of 
abstractions built upon 
binary sequences can 
be used to represent 
all digital data.

2.1.1 Describe the variety of 
abstractions used to represent 
data. [P3]

P3 Abstracting 2.1.1A

2.1.1C

2.1.1D

2.1.1E

2.1.1G



88
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

4. The figure below shows a circuit composed of two logic gates. The output of the circuit is true.

 Which of the following is a true statement about input A?

(A) Input A must be true.

(B) Input A must be false.

(C) Input A can be either true or false.

(D) There is no possible value of input A that will cause the circuit to have the output true.

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

2.2 Multiple levels of 
abstraction are used 
to write programs 
or to create other 
computational 
artifacts.

2.2.3 Identify multiple levels of 
abstractions being used when 
writing programs. [P3]

P3 Abstracting 2.2.3E

2.2.3F

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



89AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

5. The following question uses a robot in a grid of squares. The robot is represented as a triangle, 
which is initially in the bottom left square of the grid and facing right.

Consider the following code segment, which moves the robot in the grid.

Which of the following shows the location of the robot after running the code segment?

(A) (B) 

(C) (D) 



90
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.2 People write 
programs to execute 
algorithms.

5.2.1 Explain how programs 
implement algorithms. [P3]

P3 Abstracting 5.2.1A

5.2.1B

5.2.1C

6. Which of the following statements describes a limitation of using a computer simulation to 
model a real-world object or system?

(A) Computer simulations can only be built after the real-world object or system has been 
created.

(B) Computer simulations only run on very powerful computers that are not available to the 
general public.

(C) Computer simulations usually make some simplifying assumptions about the real-world 
object or system being modeled.

(D) It is difficult to change input parameters or conditions when using computer simulations.

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

2.3 Models and 
simulations use 
abstraction to generate 
new understanding 
and knowledge.

2.3.1 Use models and simulations 
to represent phenomena. [P3]

P3 Abstracting 2.3.1A

2.3.1C

2.3.1D

7. A certain social media Web site allows users to post messages and to comment on other 
messages that have been posted. When a user posts a message, the message itself is considered 
data. In addition to the data, the site stores the following metadata.

§ The time the message was posted

§ The name of the user who posted the message

§ The names of any users who comment on the message and the times the comments were 
made

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



91AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

For which of the following goals would it be more useful to analyze the data instead of the 
metadata?

(A) To determine the users who post messages most frequently

(B) To determine the time of day that the site is most active

(C) To determine the topics that many users are posting about

(D) To determine which posts from a particular user have received the greatest number of 
comments

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

3.2 Computing 
facilitates exploration 
and the discovery 
of connections in 
information.

3.2.1 Extract information from 
data to discover and explain 
connections or trends. [P1] 

P1 Connecting
computing

 3.2.1B

3.2.1G

3.2.1H

3.2.1I

8. The code segment below is intended to move a robot in a grid to a gray square. The program 
segment uses the procedure GoalReached, which evaluates to true if the robot is in the 
gray square and evaluates to false otherwise. The robot in each grid is represented as a 
triangle and is initially facing left. The robot can move into a white or gray square but cannot 
move into a black region.

   REPEAT UNTIL (GoalReached ()) 
  { 
     IF (CAN_MOVE (forward)) 
     { 
        MOVE_FORWARD () 
     } 
     IF (CAN_MOVE (right)) 
     { 
        ROTATE_RIGHT () 
     } 
     IF (CAN_MOVE (left)) 
     { 
        ROTATE_LEFT () 
     } 
  }

 
 
 
 
 
 
 
 
 
 
 
 
 
 



92
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

For which of the following grids does the code segment NOT correctly move the robot to the 
gray square?

(A) (B) 

(C) (D) 

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.2 Algorithms can 
solve many, but not 
all, computational 
problems.

4.2.4 Evaluate algorithms 
analytically and empirically 
for efficiency, correctness, and 
clarity. [P4]

P4 Analyzing problems
and artifacts

 4.2.4B

9. The table below shows the time a computer system takes to complete a specified task on the 
customer data of different-sized companies.

Task

Small Company 
(approximately 
100 customers)

Medium Company
(approximately 
1,000 customers)

 Large Company 
(approximately 
10,000 customers)

Backing up data 2 hours 20 hours 200 hours
Deleting entries from 
data

100 hours 200 hours 300 hours

Searching through data 250 hours 300 hours 350 hours
Sorting data 0.01 hour 1 hour 100 hours

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



93AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Based on the information in the table, which of the following tasks is likely to take the longest 
amount of time when scaled up for a very large company of approximately 100,000 customers?

(A) Backing up data

(B) Deleting entries from data

(C) Searching through data 

(D) Sorting data

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

3.2 Computing 
facilitates exploration 
and the discovery 
of connections in 
information.

3.2.2 Determine how large 
data sets impact the use of 
computational processes 
to discover information 
and knowledge. [P3]

P3 Abstracting 3.2.2E

3.2.2F

3.2.2H

10. Consider the code segment below.

If the variables onTime and absent both have the value false, what is displayed as a result of 
running the code segment?

(A) Is anyone there?

(B) Better late than never.

(C) Hello. Is anyone there?

(D) Hello. Better late than never.



94
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.1 Algorithms are 
precise sequences 
of instructions for 
processes that can 
be executed by 
a computer and 
are implemented 
using programming 
languages.

4.1.1 Develop an algorithm for 
implementation in a program. [P2]

P2 Creating 
computational artifacts 

4.1.1A

4.1.1C

11. Under which of the following conditions is it most beneficial to use a heuristic approach to 
solve a problem?

(A) When the problem can be solved in a reasonable time and an approximate solution is 
acceptable

(B) When the problem can be solved in a reasonable time and an exact solution is needed

(C) When the problem cannot be solved in a reasonable time and an approximate solution is 
acceptable

(D) When the problem cannot be solved in a reasonable time and an exact solution is needed

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.2 Algorithms can 
solve many, but not 
all, computational 
problems.

4.2.2 Explain the difference 
between solvable and unsolvable 
problems in computer science. [P1]

P1 Connecting 
computing

4.2.2A

4.2.2B

4.2.2C

12. Which of the following are true statements about digital certificates in Web browsers?

I. Digital certificates are used to verify the ownership of encrypted keys used in secured 
communication.

II. Digital certificates are used to verify that the connection to a Web site is fault tolerant.

(A) I only

(B) II only

(C) I and II

(D) Neither I nor II

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



95AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

6.3 Cybersecurity is an 
important concern for 
the Internet and the 
systems built on it.

6.3.1 Identify existing 
cybersecurity concerns and 
potential options that address 
these issues with the Internet 
and the systems built on it. [P1]

P1 Connecting 
computing

6.3.1H

6.3.1l

6.3.1m

13. There are 32 students standing in a classroom. Two different algorithms are given for finding 
the average height of the students.

Algorithm A

Step 1: All students stand.

Step 2: A randomly selected student writes his or her height on a card and is seated.

Step 3: A randomly selected standing student adds his or her height to the value on the card, 
records the new value on the card, and is seated. The previous value on the card is erased.

Step 4: Repeat step 3 until no students remain standing.

Step 5: The sum on the card is divided by 32. The result is given to the teacher.

Algorithm B

Step 1: All students stand.

Step 2: Each student is given a card. Each student writes his or her height on the card.

Step 3: Standing students form random pairs at the same time. Each pair adds the numbers 
written on their cards and writes the result on one student’s card; the other student is 
seated. The previous value on the card is erased.

Step 4: Repeat step 3 until one student remains standing.

Step 5: The sum on the last student’s card is divided by 32. The result is given to the teacher.

Which of the following statements is true?

(A) Algorithm A always calculates the correct average, but Algorithm B does not.

(B) Algorithm B always calculates the correct average, but Algorithm A does not.

(C) Both Algorithm A and Algorithm B always calculate the correct average.

(D) Neither Algorithm A nor Algorithm B calculates the correct average.

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.2 Algorithms can 
solve many, but not 
all, computational 
problems.

4.2.4 Evaluate algorithms 
analytically and empirically 
for efficiency, correctness, and 
clarity. [P4]

P4 Analyzing problems 
and artifacts

4.2.4C



96
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

14. The figure below shows a robot in a grid of squares. The robot is represented as a triangle, 
which is initially facing upward. The robot can move into a white or gray square but cannot 
move into a black region.

Consider the procedure MoveAndTurn below.

Which of the following code segments will move the robot to the gray square?

(A) (B) 

(C) (D) 

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



97AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.3 Programming is 
facilitated by appropriate 
abstractions.

5.3.1 Use abstraction to manage 
complexity in programs. [P3]

P3 Abstracting 5.3.1A

5.3.1B

5.3.1D

5.3.1E

5.3.1F

5.3.1G

15. Biologists often attach tracking collars to wild animals. For each animal, the following 
geolocation data is collected at frequent intervals.

 § The time

 § The date

 § The location of the animal

 Which of the following questions about a particular animal could NOT be answered using only 
the data collected from the tracking collars?

(A) Approximately how many miles did the animal travel in one week?

(B) Does the animal travel in groups with other tracked animals?

(C) Do the movement patterns of the animal vary according to the weather?

(D) In what geographic locations does the animal typically travel?

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

3.1 People use 
computer programs to 
process information 
to gain insight 
and knowledge.

3.1.1 Find patterns and test 
hypotheses about digitally 
processed information to gain
insight and knowledge. [P4]

 

P4 Analyzing problems
and artifacts

 3.1.1E

16. A summer camp offers a morning session and an afternoon session. The list morningList 
contains the names of all children attending the morning session, and the list afternoonList 
contains the names of all children attending the afternoon session.

Only children who attend both sessions eat lunch at the camp. The camp director wants to 
create lunchList, which will contain the names of children attending both sessions.



98
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

The following code segment is intended to create lunchList, which is initially empty. It uses 
the procedure IsFound (list, name), which returns true if name is found in list 
and returns false otherwise.

   FOR EACH child IN morningList 
 { 
    <MISSING CODE> 
 }

  
  
  

Which of the following could replace <MISSING CODE> so that the code segment works as 
intended?

(A) IF (IsFound (afternoonList, child)) 
{ 
   APPEND (lunchList, child) 
}

(B) IF (IsFound (lunchList, child)) 
{ 
   APPEND (afternoonList, child) 
}

(C) IF (IsFound (morningList, child)) 
{ 
   APPEND (lunchList, child) 
}

(D) IF ((IsFound (morningList, child)) OR 
   (IsFound (afternoonList, child))) 
{ 
   APPEND (lunchList, child) 
}

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.3 Programming 
is facilitated 
by appropriate 
abstractions.

5.3.1 Use abstraction to manage 
complexity in programs. [P3]

P3 Abstracting 5.3.1G

5.3.1k

5.3.1l

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



99AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

17. Consider the following program code.

Which of the following best describes the result of running the program code?

(A) The number 0 is displayed.

(B) The number 6 is displayed.

(C) The number  is displayed.10

(D) Nothing is displayed; the program results in an infinite loop.

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.4 Programs are 
developed, maintained, 
and used by people for 
different purposes.

5.4.1 Evaluate the correctness of 
a program. [P4]

P4 Analyzing problems
and artifacts

 5.4.1E

5.4.1k

5.4.1N

18. Which of the following is a true statement about data compression?

(A) Data compression is only useful for files being transmitted over the Internet.

(B) Regardless of the compression technique used, once a data file is compressed, it cannot be 
restored to its original state.

(C) Sending a compressed version of a file ensures that the contents of the file cannot be 
intercepted by an unauthorized user.

(D) There are trade-offs involved in choosing a compression technique for storing and 
transmitting data.



100
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

3.3 There are trade-offs
when representing 
information as 
digital data.

 3.3.1 Analyze how data 
representation, storage, security, 
and transmission of data involve 
computational manipulation 
of information. [P4]

P4 Analyzing problems 
and artifacts

3.3.1C

3.3.1D

3.3.1E

19. An office building has two floors. A computer program is used to control an elevator that 
travels between the two floors. Physical sensors are used to set the following Boolean variables.

Variable Description
onFloor1 set to true if the elevator is stopped on floor 1; otherwise set to false
onFloor2 set to true if the elevator is stopped on floor 2; otherwise set to false
callTo1 set to true if the elevator is called to floor 1; otherwise set to false
callTo2 set to true if the elevator is called to floor 2; otherwise set to false

The elevator moves when the door is closed and the elevator is called to the floor that it is not 
currently on. Which of the following Boolean expressions can be used in a selection statement 
to cause the elevator to move?

(A) (onFloor1 AND callTo2) AND (onFloor2 AND callTo1)

(B) (onFloor1 AND callTo2) OR (onFloor2 AND callTo1)

(C) (onFloor1 OR callTo2) AND (onFloor2 OR callTo1)

(D) (onFloor1 OR callTo2) OR (onFloor2 OR callTo1)

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.5 Programming 
uses mathematical 
and logical concepts.

5.5.1 Employ appropriate 
mathematical and logical 
concepts in programming. [P4]

P1 Connecting 
computing

5.5.1E

5.5.1F

5.5.1G

20. According to the domain name system (DNS), which of the following is a subdomain of the 
domain example.com?

(A) about.example.com

(B) example.co.uk

(C) example.com.org

(D) example.org

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



101AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

6.2 Characteristics of 
the Internet influence 
the systems built on it.

6.2.1 Explain characteristics of 
the Internet and the systems 
built on it. [P5]

P5 Communicating 6.2.1B

21. Which of the following algorithms require both selection and iteration?

Select two answers.

(A) An algorithm that, given two integers, displays the greater of the two integers

(B) An algorithm that, given a list of integers, displays the number of even integers in the list

(C) An algorithm that, given a list of integers, displays only the negative integers in the list

(D) An algorithm that, given a list of integers, displays the sum of the integers in the list

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

4.1 Algorithms are 
precise sequences 
of instructions for 
processes that can 
be executed by 
a computer and 
are implemented 
using programming 
languages.

4.1.1 Develop an algorithm for 
implementation in a program. [P2]

P2 Creating 
computational artifacts

4.1.1A

4.1.1C

4.1.1D

22. A teacher uses the following program to adjust student grades on an assignment by adding 
5 points to each student’s original grade. However, if adding 5 points to a student’s original 
grade causes the grade to exceed 100 points, the student will receive the maximum possible 
score of 100 points. The students’ original grades are stored in the list gradeList, which is 
indexed from 1 to n.

   i ← 1

  REPEAT n TIMES

  {

     <MISSING CODE>

     i ← i + 1

  }

 

 

 

 

 



102
Return to  

Table of Contents

© 2017 The College Board

AP Computer Science Principles Course and Exam Description

Sample Exam Questions

The teacher has the following procedures available.

Procedure Explanation
min (a, b) Returns the lesser of the two values a and b
max (a, b) Returns the greater of the two values a and b

Which of the following code segments can replace <MISSING CODE> so that the program 
works as intended?

Select two answers.

(A) gradeList[i] ← min (gradeList[i] + 5, 100)

(B) gradeList[i] ← max (gradeList[i] + 5, 100)

(C) gradeList[i] ← gradeList[i] + 5 
IF (gradeList[i] > 100) 
{ 
gradeList[i] ← gradeList[i] - 5 
}

(D) gradeList[i] ← gradeList[i] + 5 
IF (gradeList[i] > 100) 
{ 
gradeList[i] ← 100 
}

Enduring 
Understandings learning Objectives

Computational 
Thinking Practices

Essential 
knowledge

5.5 Programming 
uses mathematical 
and logical concepts.

5.5.1 Employ appropriate 
mathematical and logical 
concepts in programming. [P1]

P1 Connecting 
computing

5.5.1A

5.5.1B

5.5.1H

S
a

m
p

le
 e

x
a

m
 Q

u
e

S
t

io
n

S



103AP Computer Science Principles Course and Exam Description
Return to  

Table of Contents

© 2017 The College Board

Sample Exam Questions
S

a
m

p
le

 e
x

a
m

 Q
u

e
S

t
io

n
S

Answers to Sample Exam Questions

1 – C 12 – A

2 – C 13 – C

3 – C 14 – C

4 – A 15 – C

5 – A 16 – A

6 – C 17 – D

7 – C 18 – D

8 – D 19 – B

9 – D 20 – A

10 – B 21 – B, C

11 – C 22 – A, D



104
Return to  

Table of Contents

© 2017 The College Board

Reproducibles for Students

AP Computer Science Principles Course and Exam Description

Reproducibles for Students
The following pages contain reproducible versions of the assessment overview and 
performance task guidelines.

R
E

P
R

O
D

U
C

IB
lE

S



105

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Handout

AP Computer Science Principles 
Assessment Overview for Students
The AP Computer Science Principles course has three assessments, consisting of 
two performance tasks and an end-of-course AP Exam. All three assessments are 
summative and will be used to calculate a final AP score (using the 1–5 scale) for 
AP Computer Science Principles.

Assessment Timing Percentage of Total AP Score

Explore Performance Task  8 hours 16%

Create Performance Task 12 hours 24%

End-of-Course Exam  2 hours 60%

Students who are completing the AP Computer Science Principles course in a 
nontraditional classroom situation (e.g., online, homeschool, independent study) 
should consult a school-based AP Coordinator for instructions on taking the 
AP Exam and submitting work for the performance tasks.

Investigation and Citation
The through-course performance tasks require you to create computational 
artifacts. A computational artifact is a visualization, a graphic, a video, a program, 
or an audio recording that you create using a computer. For the Create performance 
task, you will develop a computer program and for the Explore performance task, 
you will create a computational artifact of your choosing to represent or illustrate 
the intended purpose, function, or effect of a computing innovation using any 
computational tool(s) you wish.

In creating your computational artifact, you can create your own original 
work, including video, music, text, images, graphs, and program code. If you 
use external work to integrate into your computational artifact, you must 
acknowledge, attribute, and/or cite sources and include a bibliography with your 
submission. External work that should be acknowledged include video, music, 
text, images, graphs, and program code that are used in the creation of your 
computational artifacts.



106

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Handout

AP Computer Science Principles Policy on Plagiarism

A student who fails to acknowledge (i.e., through citation, through attribution, by 
reference, and/or through acknowledgment in a bibliographic entry) the source or 
author of any and all information or evidence taken from the work of someone else 
will receive a score of 0 on that performance task.

To the best of their ability, teachers will ensure that students understand 
ethical use and acknowledgment of the ideas and work of others as well as the 
consequences of plagiarism. The student’s individual voice should be clearly 
evident, and the ideas of others must be acknowledged, attributed, and/or cited. 
A computational artifact without acknowledgment of the media used in the creation 
of the computational artifact, and program code segment(s) written by someone 
else used in a program without appropriate acknowledgment, are all considered 
plagiarized work.

Programming language Requirements
AP Computer Science Principles is language agnostic. This means that there is no 
specific language requirement. When completing the Create – Applications from 
Ideas performance task for this course, you are allowed to select a language you 
feel is most appropriate to meet the requirements of the task. When selecting 
a language or program, you should review the requirements section of the 
performance task to ensure that your program will be sophisticated enough to 
implement mathematical and logical concepts, create abstractions, and implement 
algorithms.

Peer-to-Peer Collaboration
Collaboration is only allowed on designated sub-components of the Create 
performance task.

For the Explore – Impact of Computing Innovations performance task, collaboration 
of any kind is not allowed.

For the Create – Applications from Ideas performance task, you are encouraged to 
collaborate on the development of their program with another student in your class. 
Collaboration is not allowed during the creation of the video or when answering the 
written responses. 

Students completing AP Computer Science Principles in a nontraditional 
classroom situation (e.g., online, homeschool, independent study) are encouraged 
to collaborate with another student peer when completing the Create 
performance task.



107

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Handout

Preparing for the Through-Course Performance Tasks
The following guidelines are meant to help you be successful on the performance 
tasks as well as to clarify or address any questions you may have regarding the 
process of completing these tasks.

Prior to your teacher administering the performance tasks, you should:

▶ obtain content knowledge and skills that will help you succeed on the performance 
tasks;

▶ practice either an entire performance task or individual prompts of the tasks;

▶ review the scoring guidelines, found on AP Central, to understand how your work 
will be assessed;

▶ examine examples of performance task found on AP Central of submissions at high, 
medium, and low levels. If you select a computing innovation that is represented 
in one of the examples, or that was discussed in class, you must find new sources 
and submit original responses to avoid. You cannot submit any work from practice 
performance tasks.

▶ pay attention to the instructions concerning the size of the files to be uploaded; the 
computational artifact for the Explore performance task and the video for the Create 
performance task individually cannot exceed 30MB.

▶ ensure you know the proper way to evaluate and appropriately cite a source, 
including program code; any program code which has not been written by you must 
be cited and credit given to the author;

 ▶ understand the level of detail expected in writing your responses by examining the 
scoring guidelines and high level samples found on AP Central;

▶ understand that you may not revise your work once you have submitted your work 
as final to the AP Digital Portfolio; and

 ▶ be aware that the scoring process that occurs in the AP Reading may be different 
from the scoring process that occurs in your classroom; the AP score that you 
receive may be different than your classroom grade.



108

AP® Capstone Program Course and Exam Description

© 2017 The College Board

HandoutAP Computer Science Principles: Explore Performance Task

Performance Task: Explore – Impact of 
Computing Innovations

Overview
Computing innovations impact our lives in ways that require considerable study 
and reflection for us to fully understand them. In this performance task, you will 
explore a computing innovation of your choice. A computing innovation is an 
innovation that includes a computer or program code as an integral part of its 
functionality. Your close examination of this computing innovation will deepen your 
understanding of computer science principles. 

Please note that once this performance task has been assigned as an assessment 
(rather than as practice), you are expected to complete the task with minimal 
assistance from anyone. For more clarification see the Guidelines for Completing the 
Through-Course Performance Tasks section.

You will be provided with a minimum of 8 hours of class time to develop, complete, 
and submit the following:

▶ A computational artifact

▶ Written responses

Scoring guidelines and instructions for submitting your performance tasks are 
available on the AP Computer Science Principles Course Home Page.

Note: Students in nontraditional classroom environments should consult a school-
based AP Coordinator for submission instructions.

When completing the Explore – Impacts of Computing Innovations performance 
task, you will be expected to conduct investigations on a computing innovation. A 
computing innovation is an innovation that includes a computer or program code as 
an integral part of its functionality. 

You must ensure you have identified relevant, credible, and easily accessible 
sources to support your creation of a computational artifact as well as to support 
your responses to the prompts. You can search for print or nonprint sources as 
part of your investigation. You can refer to a journal, Web page, or an expert that is 
being quoted as part of your written response. Avoid plagiarism by acknowledging, 
attributing, and/or citing sources throughout your responses.

General Requirements
This performance task requires you to select and investigate a computational 
innovation to:

▶ analyze a computing innovations impact on society, economy, or culture and explain 
how this impact could be beneficial and/or harmful; 



109

AP® Capstone Program Course and Exam Description

© 2017 The College Board

HandoutAP Computer Science Principles: Explore Performance Task

 ▶ explain how a computing innovation consumes, produces, or transforms data; and

▶ describe how data storage, data privacy, or data security concerns are raised based 
on the capabilities of the computing innovation.

You are also required to:

▶ investigate your computing innovation using a variety of sources (e.g., print, online, 
expert interviews);

 ▶ provide in-text citations of at least three different sources that helped you create 
your computational artifact and/or formulate your written responses;

› At least two of the sources must be available online or in print; your third source 
may be either online, in print, or a personal interview with an expert on the 
computing innovation. 

› At least two of the sources must have been created after the end of the previous 
academic year.

 ▶ produce a computational artifact that illustrates, represents, or explains the 
computing innovation's intended purpose, its function, or its effect; and

▶ provide written responses to all the prompts in the performance task about your 
computational artifact and computing innovation.

Submission Requirements
1. Computational Artifact

Your computational artifact must provide an illustration, representation, or 
explanation of the computing innovation’s intended purpose, its function, or its 
effect. The computational artifact must not simply repeat the information supplied 
in the written responses and should be primarily nontextual.

Submit a video, audio, or PDF file. Use computing tools and techniques to create one 
original computational artifact (a visualization, a graphic, a video, a program, or an 
audio recording). Acceptable multimedia file types include .mp3, .mp4, .wmv, .avi, 
.mov, .wav, .aif, or .pdf format. PDF files must not exceed three pages. Video or 
audio files must not exceed 1 minute in length and must not exceed 30MB in size. 

2. Written Responses

Submit one PDF file in which you respond directly to each of the prompts below. 
Clearly label your responses 2a–2e in order. Your responses must provide evidence 
of the extensive knowledge you have developed about your chosen computing 
innovation and its impact(s). Write your responses so they would be understandable 
to someone who is not familiar with the computing innovation. Include citations, 
as applicable, within your written responses. Your response to prompts 2a–2d 
combined must not exceed 700 words. The references required in 2e are not 
included in the final word count.



110

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Handout

Computational Artifact

2a. Provide information on your computing innovation and computational artifact. 

w Name the computing innovation that is represented by your computational artifact.

w Describe the computing innovation’s intended purpose and function. 

w Describe how your computational artifact illustrates, represents, or explains 
the computing innovation’s intended purpose, its function, or its effect.

 (Must not exceed 100 words)

2b. Describe your development process, explicitly identifying the computing tools 
and techniques you used to create your artifact. Your description must be 
detailed enough so that a person unfamiliar with those tools and techniques will 
understand your process. (Must not exceed 100 words)

Computing Innovation

2c. Explain at least one beneficial effect and at least one harmful effect the 
computing innovation has had, or has the potential to have, on society, economy, 
or culture. (Must not exceed 250 words)

2d. Using specific details, describe: 

 w the data your innovation uses;

w how the innovation consumes (as input), produces (as output), and/or 
transforms data; and

 w at least one data storage concern, data privacy concern, or data security 
concern directly related to the computing innovation.

 (Must not exceed 250 words) 

References

2e. Provide a list of at least three online or print sources used to create your 
computational artifact and/or support your responses through in-text citation to 
the prompts provided in this performance task. 

w At least two of the sources must have been created after the end of the 
previous academic year.

w For each online source, include the complete and permanent URL. Identify the 
author, title, source, the date you retrieved the source, and, if possible, the 
date the reference was written or posted. 

w For each print source, include the author, title of excerpt/article and magazine 
or book, page number(s), publisher, and date of publication.

w If you include an interview source, include the name of the person you 
interviewed, the date on which the interview occurred, and the person’s 
position in the field. 

w Include in-text citations for the sources you used.

w Each source must be relevant, credible, and easily accessed.

AP Computer Science Principles: Explore Performance Task



111

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Handout

Preparing for the Explore Performance Task
Prior to your teacher administering this task, you should:

▶ understand that a computing innovation (i.e., an innovation that that includes a 
computer or program code as an integral part of its functionality) has a meaningful 
personal or community emphasis is an appropriate choice, as long as it fulfills the 
requirements to complete all the prompts in the performance task; 

▶ practice searching and evaluating sources relevant to computing innovations; all 
sources cited must be relevant, credible, and easily accessible; 

▶ practice clearly explaining the impact the intended use of a computing innovation has 
on society, economy, and culture, clearly justifying both beneficial and harmful effects; 

▶ practice demonstrating your knowledge of computer science and understanding of 
how data is input, output, and transformed in your analysis of the data used by the 
computing innovation. 

▶ practice making connections between the data used by a computing innovation and 
a security, privacy, or storage concern.

▶ obtain the meaning and purpose of creating a computational artifact; your creation 
must provide an illustration, representation, or explanation of the computing 
innovation’s intended purpose, its function, or its effect; 

 ▶ have exposure to the use of a variety of computational tools that can be used to 
create effective computational artifacts;

 ▶ understand which computational artifacts would be considered effective and 
ineffective. 

	 Effective artifacts include: 

› visual, graphical, and/or audio content to help a reader understand the purpose, 
function, or effect of a computing innovation; and 

› the use of communications media, such as animations, comic strips, 
infographics, and/or public service announcements, to illustrate the purpose, 
function, or effect of a computing innovation. 

 Ineffective artifacts include: 

 › artifacts that repeat information previously supplied in the written responses; 

 › multislide presentations with paragraphs of text or bullets; 

 › artifacts that have not been created by the student; and 

 › artifacts that focus on advertising the computing innovation’s functionality 
instead of the purpose of the innovation. 

▶ practice writing responses based on relevant and credible sources and include  
in-text citations; and

 ▶ practice appropriate acknowledgment of sources used in the creation of your 
computational artifact.

AP Computer Science Principles: Explore Performance Task



112

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Handout

Guidelines for Completing the 
Explore Performance Task
You must: 

▶ be aware of the performance task directions, timeline, and scoring criteria;

 ▶ support your written analysis of your computing innovation when responding to 
all the prompts by using details related to the knowledge and understanding of 
computer science you have obtained throughout the course and your investigation;

 ▶ provide evidence to support your claims using in-text citations;

 ▶ use relevant and credible sources to gather information about your computing 
innovation;

 ▶ provide acknowledgments for the use of any media or program code used in the 
creation of your computational artifact that is not your own; and

▶ allow your own interests to drive your choice of computing innovation and 
computational artifact.

You may:

▶ follow a timeline and schedule for completing the performance task;

▶ seek clarification from your teacher or AP Coordinator pertaining to the task, 
timeline, components, and scoring criteria;

 ▶ seek clarification from your teacher or AP Coordinator regarding submission 
requirements;

▶ as needed, seek assistance from your teacher or AP Coordinator in defining your 
focus and choice of topics; and

▶ seek assistance from your teacher or AP Coordinator to resolve technical problems 
that impede work, such as a failing workstation or difficulty with access to 
networks, or help with saving files or making movie files.

You may not:

 ▶ collaborate on the Explore performance task;

 ▶ submit work that has been revised, amended, or corrected by another individual;

▶ submit work from a practice performance task as your official submission to the 
College Board to be scored by the AP Program; or

▶ seek assistance or feedback on answers to prompts.

AP Computer Science Principles: Explore Performance Task



113

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Handout

Performance Task: Create – Applications 
from Ideas

Overview 
Programming is a collaborative and creative process that brings ideas to life 
through the development of software. Programs can help solve problems, enable 
innovations, or express personal interests. In this performance task, you will be 
developing a program of your choice. Your development process should include 
iteratively designing, implementing, and testing your program. You are strongly 
encouraged to work with another student in your class.

Please note that once this performance task has been assigned as an assessment 
(rather than as practice), you are expected to complete the task with minimal 
assistance from anyone other than your collaborative peer(s). For more clarification 
see the Guidelines for Completing the Through-Course Performance Tasks section.

You will be provided with a minimum of 12 hours of class time to complete and submit 
the following:

 ▶ A video of your program running

▶ Individual written responses about your program and development process

 ▶ Program code

Scoring guidelines and instructions for submitting your performance tasks are 
available on the AP Computer Science Principles Course Home Page.

Note: Students in nontraditional classroom environments should consult a school-
based AP Coordinator for instructions.

General Requirements
This performance task requires you to develop a program on a topic that interests 
you or one that solves a problem. During the completion of this performance task, 
you will iteratively design, implement, and test your program. You will provide 
written responses to prompts about your program and specific program code that 
are significant to the functionality of your program. It is strongly recommended that 
a portion of the program involve some form of collaboration with another student in 
your class, for example, in the planning, designing, or testing (debugging) part of 
the development process. Your program development must also involve a significant 
amount of independent work writing your program code, in particular, algorithm(s) 
and abstraction(s) that you select to use as part of your written response to describe 
how the program code segments help your program run.

AP Computer Science Principles: Create Performance Task



114

AP® Capstone Program Course and Exam Description

© 2017 The College Board

HandoutAP Computer Science Principles: Create Performance Task

You are required to:

▶ independently develop an algorithm that integrates two or more algorithms and 
that is fundamental for your program to achieve its intended purpose;

▶ develop an abstraction that manages the complexity of your program;

 ▶ create a video that displays the running of your program and demonstrates its 
functionality;

▶ write responses to all the prompts in the performance task; and

 ▶ submit your entire program code.

Program Requirements
Your program must demonstrate a variety of capabilities and implement several 
different language features that, when combined, produce a result that cannot be 
easily accomplished without computing tools and techniques. Your program should 
draw upon mathematical and logical concepts, such as use of numbers, variables, 
mathematical expressions with arithmetic operators, logical and Boolean operators 
and expressions, decision statements, iteration, and/or collections. 

Your program must demonstrate:

▶ use of several effectively integrated mathematical and logical concepts, from the 
language you are using;

▶ implementation of an algorithm that integrates two or more algorithms and integrates 
mathematical and/or logical concepts; and 

▶ development and use of abstractions to manage the complexity of your program 
(e.g., procedures, abstractions provided by the programming language, APIs).

Submission Requirements
1. Video

Submit one video in .mp4, .wmv, .avi, or .mov format that demonstrates the running 
of at least one significant feature of your program. Your video must not exceed 
1 minute in length and must not exceed 30MB in size.

2. Written Responses

Submit one PDF file in which you respond directly to each prompt. Clearly label 
your responses 2a–2d in order. Your response to all prompts combined must not 
exceed 750 words, exclusive of the Program Code.



115

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Program Purpose and Development

2a. Provide a written response or audio narration in your video that:

w identifies the programming language; 

 w identifies the purpose of your program; and

 w explains what the video illustrates.

 (Must not exceed 150 words)

2b. Describe the incremental and iterative development process of your program, 
focusing on two distinct points in that process. Describe the difficulties and/
or opportunities you encountered and how they were resolved or incorporated. 
In your description clearly indicate whether the development described 
was collaborative or independent. At least one of these points must refer to 
independent program development. (Must not exceed 200 words)

2c. Capture and paste a program code segment that implements an algorithm 
(marked with an oval in section 3 below) and that is fundamental for your 
program to achieve its intended purpose. This code segment must be an 
algorithm you developed individually on your own, must include two or more 
algorithms, and must integrate mathematical and/or logical concepts. Describe 
how each algorithm within your selected algorithm functions independently, 
as well as in combination with others, to form a new algorithm that helps to 
achieve the intended purpose of the program. (Must not exceed 200 words)

2d. Capture and paste a program code segment that contains an abstraction you 
developed individually on your own (marked with a rectangle in section 3 
below). This abstraction must integrate mathematical and logical concepts. 
Explain how your abstraction helped manage the complexity of your program. 
(Must not exceed 200 words)

3. Program Code

Capture and paste your entire program code in this section.

› Mark with an oval the segment of program code that implements the algorithm 
you created for your program that integrates other algorithms and integrates 
mathematical and/or logical concepts.

 › Mark with a rectangle the segment of program code that represents an 
abstraction you developed. 

› Include comments or acknowledgments for program code that has been written 
by someone else.

HandoutAP Computer Science Principles: Create Performance Task



116

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Preparing for the Create Performance Task
Prior to your teacher administering this task, you should:

▶ Brainstorm problems that programming can address, or brainstorm special interests 
that programming can help develop;

▶ Ensure you understand the iterative nature of developing a computer program;

 ▶ Be prepared to collaborate with peers as necessary and in different ways;

▶ Ensure you are able to analyze program code and code segments and explain the 
function as it relates to the overall program;

▶ Know how to keep a programming journal of the design choices that you will make 
during the development of your program code and the effect of these decisions 
on the program’s function. You can use this journal as a point of reference when 
demonstrating your understanding of how:

› an algorithm was built as part of the integration of two or more algorithms;

› a program functions differently with the inclusion of algorithms and 
abstractions;

› the inclusion of an abstraction has made their program code more compact, 
readable and/or reusable and how the program would operate differently 
without the inclusion of the abstraction; 

 ▶ obtain programming support as necessary while practicing the skills needed to 
complete the performance task.

Guidelines for Completing the 
Create Performance Task
You must:

▶ be aware of the performance task directions, timeline, and scoring criteria;

▶ apply computer science knowledge you’ve obtained throughout the course when 
developing your program and in your explanation of its function;

 ▶ provide acknowledgment for program code used in your program that is not your 
own; and

▶ allow your own interests to drive your choice of program.

You may:

 ▶ follow a timeline and schedule for completing the performance task;

▶ seek clarification from your teacher or AP Coordinator pertaining to the task;

▶ seek clarification from your teacher or AP Coordinator regarding submission 
requirements;

HandoutAP Computer Science Principles: Create Performance Task



117

AP® Capstone Program Course and Exam Description

© 2017 The College Board

▶ as needed, seek assistance from your teacher or AP Coordinator in defining your 
focus or choice of topics;

 ▶ seek assistance from your teacher or AP Coordinator to resolve technical problems 
that impede work, such as a failing workstation or difficulty with access to 
networks, or help with saving files or making movie files;

 ▶ obtain assistance from your teacher or AP Coordinator with the formation of peer-to-
peer collaboration when completing the Create performance task;

▶ seek assistance from your teacher or AP Coordinator in resolving collaboration 
issues where one partner is clearly and directly impeding the completion of the 
Create performance task; and

▶ seek guidance from your teacher or AP Coordinator to use and acknowledge APIs 
or other pieces of open-source code. Program code not written by you can be used 
in programs as long as you are extending the project in some new way. You should 
provide acknowledgment and credit from program code you did not write.

You may not:

 ▶ collaborate on the video or any of the written responses; 

▶ submit work that has been revised, amended, or correct by another individual, with 
the exception of cited program code;

▶ submit work from a practice performance task as your official submission to the 
College Board to be scored by the AP Program; or

▶ seek assistance or feedback on answers to prompts.

HandoutAP Computer Science Principles: Create Performance Task



118

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Exam 
Reference Sheet
As AP Computer Science Principles does not designate any particular programming 
language, this reference sheet provides instructions and explanations to help 
students understand the format and meaning of the questions they will see on 
the exam. The reference sheet includes two programming formats: text based and 
block based.

Programming instructions use four data types: numbers, Booleans, strings, and lists.

Instructions from any of the following categories may appear on the exam:

▶ Assignment, Display, and Input 

▶ Arithmetic Operators and Numeric Procedures

▶ Relational and Boolean Operators

▶ Selection

▶ Iteration

 ▶ List Operations

▶ Procedures

▶ Robot

AP Computer Science Principles Exam Reference Sheet



119

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Exam Reference Sheet

The relational operators =, ≠, >, <, ≥, and 
≤ are used to test the relationship between two 
variables, expressions, or values.

For example, a = b evaluates to true if 
a and b are equal; otherwise, it evaluates to 
false.

Instruction Explanation
Assignment, Display, and Input

Text:
a ← expression

Block:

Evaluates expression and assigns the 
result to the variable a.

Text:
DISPLAY (expression)

Block:

Displays the value of expression, 
followed by a space.

Text:
INPUT ()

Block:

Accepts a value from the user and returns it.

Arithmetic Operators and Numeric Procedures
Text and Block:
a + b 
a - b 
a * b 
a / b

The arithmetic operators +, -, *, and / are 
used to perform arithmetic on a and b.

For example, 3 / 2 evaluates to 1.5.

Text and Block:
a MOD b

Evaluates to the remainder when a is divided 
by b. Assume that a and b are positive 
integers.

For example, 17 MOD 5 evaluates to 2.
Text:
RANDOM (a, b)

Block:

Evaluates to a random integer from a to b, 
including a and b.

For example, RANDOM (1, 3) could 
evaluate to 1, 2, or 3.

Relational and Boolean Operators 
Text and Block:
a = b 
a ≠ b 
a > b 
a < b 
a ≥ b 
a ≤ b



120

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Exam Reference Sheet

 

Instruction Explanation
Relational and Boolean Operators (continued) 

Text:
NOT condition

Block:

Evaluates to true if condition is false; 
otherwise evaluates to false.

Text:
condition1 AND condition2

Block:

Evaluates to true if both condition1 
and condition2 are true; otherwise, 
evaluates to false.

Text:
condition1 OR condition2

Block:

Evaluates to true if condition1 is 
true or if condition2 is true or if 
both condition1 and condition2 are
true; otherwise, evaluates to false.

Selection
Text:
IF (condition) 
{ 
   <block of statements> 
}

Block:

The code in block of statements 
is executed if the Boolean expression 
condition evaluates to true; no action is 
taken if condition evaluates to false.



121

AP® Capstone Program Course and Exam Description

© 2017 The College Board

AP Computer Science Principles Exam Reference Sheet

Instruction Explanation
Selection (continued) 

Text:
IF (condition) 
{ 
   <first block of statements> 
} 
ELSE 
{ 
   <second block of statements> 
}

Block:

The code in first block of 
statements is executed if the Boolean 
expression condition evaluates to true; 
otherwise, the code in second block of 
statements is executed.

Iteration 
Text:
REPEAT n TIMES 
{ 
   <block of statements> 
}

Block:

The code in block of statements is 
executed n times.

Text:
REPEAT UNTIL (condition) 
{ 
   <block of statements> 
}

Block:

The code in block of statements 
is repeated until the Boolean expression 
condition evaluates to true.



122

AP® Capstone Program Course and Exam Description

© 2017 The College Board

The length of list is increased by 1, and 
value is placed at the end of list.

Instruction Explanation
List Operations

AP Computer Science Principles Exam Reference Sheet

For all list operations, if a list index is less than 1 or greater than the length of the list, an error 
message is produced and the program terminates.
Text:
list[i]

Block:

Refers to the element of list at index i. 
The first element of list is at index 1.

Text:
list[i] ← list[j]

Block:

Assigns the value of list[j] to list[i].

Text:
list ← [value1, value2, value3]

Block:

Assigns value1, value2, and value3 
to list[1], list[2], and list[3], 
respectively.

Text:
FOR EACH item IN list 
{ 
   <block of statements> 
} 

Block:

The variable item is assigned the value of 
each element of list sequentially, in order 
from the first element to the last element. 
The code in block of statements is 
executed once for each assignment of item.

Text:
INSERT (list, i, value)

Block:

Any values in list at indices greater than or 
equal to i are shifted to the right. The length 
of list is increased by 1, and value is placed 
at index i in list.

Text:
APPEND (list, value)

Block:



123

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Instruction Explanation
List Operations (continued)

AP Computer Science Principles Exam Reference Sheet

Text:
REMOVE (list, i)

Block:

Removes the item at index i in list and 
shifts to the left any values at indices greater 
than i. The length of list is decreased by 1.

Text:
LENGTH (list)

Block:

Evaluates to the number of elements in list.

Procedures 
Text:
PROCEDURE name ( parameter1, 

parameter2, ...)
{ 
     <instructions> 
}

Block:

A procedure, name, takes zero or more 
parameters. The procedure contains 
programming instructions.

Text:
PROCEDURE name ( parameter1, 

parameter2, ...)
{ 
      <instructions> 

RETURN (expression)
}

Block:

A procedure, name, takes zero or more 
parameters. The procedure contains 
programming instructions and returns the value 
of expression. The RETURN statement 
may appear at any point inside the procedure 
and causes an immediate return from the 
procedure back to the calling program.



124

AP® Capstone Program Course and Exam Description

© 2017 The College Board

Instruction Explanation
Robot

AP Computer Science Principles Exam Reference Sheet

If the robot attempts to move to a square that is not open or is beyond the edge of the grid, the robot 
will stay in its current location and the program will terminate.
Text:
MOVE_FORWARD ()

Block:

The robot moves one square forward in the 
direction it is facing.

Text:
ROTATE_LEFT ()

Block:

The robot rotates in place 90 degrees 
counterclockwise (i.e., makes an in-place 
left turn).

Text:
ROTATE_RIGHT ()

Block:

The robot rotates in place 90 degrees clockwise 
(i.e., makes an in-place right turn).

Text:
CAN_MOVE (direction)

Block:

Evaluates to true if there is an open square 
one square in the direction relative to where 
the robot is facing; otherwise evaluates to 
false. The value of direction can be left, 
right, forward, or backward.



Return to  
Table of Contents

© 2017 The College Board

125AP Computer Science Principles Course and Exam Description

Appendix: Changes to the Course and Exam Description
A

P
P

E
N

D
IX

Appendix: Changes to the Course and 
Exam Description
Since the publication’s update in fall 2016 some modifications have been made 
to the AP Computer Science Principles curriculum framework. The chart below 
summarizes the changes made, which are now reflected in this course and exam 
description.

Revision Explanation

1. Definition of computing innovation A computing innovation is an innovation that includes a 
computer or program code as an integral part of its functionality.

2. Guidance to build collaboration 
throughout the course

This information has been revised and moved 
from the assessment section into the instructional 
approaches section to provide guidance on building 
collaboration throughout the course. 

3. Clarification on in-text citation Students must support their claims with at least 
three in-text citations within the written responses 
submitted for the Explore performance task.

4. Guidance on the development and 
selection of algorithms and abstractions.

The algorithms (for prompt 2c) and the abstraction (for 
prompt 2d) selected as part of the written responses 
for the Create performance task must be developed 
independently, not collaboratively with a peer(s). 

5. Organization of performance 
tasks guidelines

The following changes were made to the 
performance tasks guidelines:

▶ Teacher guidelines (i.e., what teachers “should” do 
to prepare their students, and what teachers “must”, 
“may”, and “may not” do during the administration of 
the performance tasks) have been moved to appear 
after the task guidelines for each performance task.

▶ Additional guidelines have been added for clarification.

6. Reproducibles for Students section The following changes were made to the 
Reproducibles for Students section:

▶ Guidelines for preparing for the performance tasks (i.e., 
what students “must”, “may”, and “may not” do during the 
administration of each performance task) have been moved 
to appear after the task directions for each performance task.

 ▶ Additional guidelines have been added for clarification 
and to mirror the guidelines provided to teachers.

7. Sample Questions All sample questions have been aligned 
to only one learning objective. 



Contact Us

AP Services
P.O. Box 6671
Princeton, NJ 08541-6671
609-771-7300
888-225-5427 (toll free in the 
U.S. and Canada)
610-290-8979 (fax)
Email: apexams@info.collegeboard.org

National Office
250 Vesey Street
New York, NY 10281
212-713-8000

AP Canada Office
2950 Douglas Street, Suite 550
Victoria, BC, Canada V8T 4N4
250-472-8561
800-667-4548 (toll free in Canada only)
Email: gewonus@ap.ca

International Services
Serving all countries outside the U.S. and Canada 
250 Vesey Street
New York, NY 10281
212-373-8738
Email: international@collegeboard.org

middle States Regional Office
Serving Delaware, District of Columbia, Maryland, 
New Jersey, New York, Pennsylvania, Puerto Rico, 
and the U.S. Virgin Islands
Three Bala Plaza East
Suite 501
Bala Cynwyd, PA 19004-1501
610-227-2550
866-392-3019
610-227-2580 (fax)
Email: msro@info.collegeboard.org

midwestern Regional Office
Serving Illinois, Indiana, Iowa, Kansas, Michigan, 
Minnesota, Missouri, Nebraska, North Dakota, 
Ohio, South Dakota, West Virginia, and Wisconsin
6111 N. River Road, Suite 550
Rosemont, IL 60018-5158
866-392-4086
847-653-4528 (fax)
Email: mro@info.collegeboard.org

New England Regional Office
Serving Connecticut, Maine, Massachusetts, New 
Hampshire, Rhode Island, and Vermont
1601 Trapelo Road, Suite 12
Waltham, MA 02451-1982
866-392-4089
781-663-2743 (fax)
Email: nero@info.collegeboard.org

Southern Regional Office
Serving Alabama, Florida, Georgia, Kentucky, 
Louisiana, Mississippi, North Carolina, South 
Carolina, Tennessee, and Virginia
3700 Crestwood Parkway NW, Suite 700
Duluth, GA 30096-7155
866-392-4088
770-225-4062 (fax)
Email: sro@info.collegeboard.org

Southwestern Regional Office
Serving Arkansas, New Mexico, Oklahoma, and Texas
4330 Gaines Ranch Loop, Suite 200
Austin, TX 78735-6735
866-392-3017
512-721-1841 (fax)
Email: swro@info.collegeboard.org

western Regional Office
Serving Alaska, Arizona, California, Colorado, 
Hawaii, Idaho, Montana, Nevada, Oregon, Utah, 
Washington, and Wyoming
2099 Gateway Place, Suite 550
San Jose, CA 95110-1051
866-392-4078
408-367-1459 (fax)
Email: wro@info.collegeboard.org



apcentral.collegeboard.org

00677-014
160081394

http://apcentral.collegeboard.org

	AP® Computer Science Principles Course and Exam Description: Including the Curriculum Framework
	About the College Board
	AP® Equity and Access Policy
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About AP®
	Offering AP Courses and Enrolling Students
	How AP Courses and Exams Are Developed
	How AP Exams Are Scored
	Using and Interpreting AP Scores
	Additional Resources

	About the AP Computer Science Principles Course
	Prerequisites
	Participating in the AP Course Audit

	AP Computer Science Principles Curriculum Framework
	Introduction
	Overview of the Curriculum Framework
	Relationship Between the Curriculum Framework and Assessment

	Computational Thinking Practices
	P1: Connecting Computing
	P2: Creating Computational Artifacts
	P3: Abstracting
	P4: Analyzing Problems and Artifacts
	P5: Communicating
	P6: Collaborating

	The Concept Outline
	Big Idea 1: Creativity
	Big Idea 2: Abstraction
	Big Idea 3: Data and Information
	Big Idea 4: Algorithms
	Big Idea 5: Programming
	Big Idea 6: The Internet
	Big Idea 7: Global Impact


	AP Computer Science Principles Instructional Approaches
	Planning Your Course
	Linking Computational Thinking Practices and Learning Objectives
	Linking Course Concepts and Strategies

	AP Computer Science Principles Assessment Overview
	Preparing for the Through-Course Performance Tasks
	Performance Task: Explore – Impact of Computing Innovations
	Performance Task: Create – Applications From Ideas

	AP Computer Science Principles End-of-Course Exam
	Sample Exam Questions
	Answers to Sample Exam Questions


	Reproducibles for Students
	AP Computer Science Principles Assessment Overview for Students
	Investigation and Citation
	Programming Language Requirements
	Peer-to-Peer Collaboration
	Preparing for the Through-Course Performance Tasks

	Performance Task: Explore – Impact of Computing Innovations
	Preparing for the Explore Performance Task
	Guidelines for Completing the Explore Performance Task

	Performance Task: Create – Applications from Ideas
	Preparing for the Create Performance Task
	Guidelines for Completing the Create Performance Task

	AP Computer Science Principles Exam Reference Sheet

	Appendix: Changes to the Course and Exam Description
	Contact Us




