Biology 11th Edition by Mader, and Windelspecht ©2013 (McGraw-Hill)

Chapters/Sections	Essential Knowledge	Required content for the AP course	Illustrative examples covered in the textbook-teach at least one	Content not required for the AP Course
Chapter 1. A View of Life				
1.1 How to Define Life				2-5
1.2 Evolution, the Unifying Concept of Biology	1.A.1: Natural selection is a major mechanism of evolution	6-8		
1.3 How the Biosphere Is Organized				9-10
1.4 The Process of Science				11-16
Chapter 2. Basic Chemistry				
2.1 Chemical Elements				22-25
2.2 Molecules and Compounds	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	26-27		
2.3 Chemistry of Water	2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization.	28-31	 2.A.3: Cohesion (30–31); Adhesion (30–31); High specific heat capacity (29); Heat of vaporization (29); Universal solvent supports reactions (29–30) 	
2.4 Acids and Bases				32-34
Chapter 3. The Chemistry of Organic Molecules				
3.1 Organic Molecules	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	38-40		
3.2 Carbohydrates	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	41-44		
3.3 Lipids	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	45-48		
3.4 Proteins	3.A.1: DNA, and in some cases RNA, is	49-53	3.A.1:	

AP® is a registered trademark of the College Board which was not involved in the development of, and does not endorse this product.

	the primary source of heritable information. 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.		• Synthesis (49-53)
3.5 Nucleic Acids	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	54-56	
Chapter 4. Cell Structure and Function			
4.1 Cellular Level of Organization	 2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 	61-64	
4.2 Prokaryotic Cells	 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 	65-66	
4.3 Introducing Eukaryotic Cells	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	67-69	 1.B.1: Cytoskeleton (is a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) (68); Membrane-bound organelles (mitochondria and/or chloroplasts) (67); Endomembrane systems, including the nuclear envelope (67)
4.4 The Nucleus and Ribosomes	2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their	70-71	2.B.3: • Nuclear Envelope (70–71)

	interactions, provide essential cellular processes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.		
4.5 The Endomembrane System	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	72-74	1.B.1: • Endomembrane systems, including the nuclear envelope (72-74) 2.B.3: • Endoplasmic Reticulum (72); • Golgi (72–73) 3.A.3 • Tay-Sachs (73)
4.6 Other Vesicles and Vacuoles	2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	75	
4.7 The Energy-Related Organelles	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes.	76-77	1.B.1: • Membrane-bound organelles (mitochondria and/or chloroplasts) (76–77) 2.B.3: • Chloroplasts (76–77); • Mitochondria (77)

	4.B.2: Cooperative interactions within		
	organisms promote efficiency in the use		
	of energy and matter.		
4.8 The Cytoskeleton	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	78-81	1.B.1: • Cytoskeleton (is a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) (78-81)
Chapter 5. Membrane Structure and	of energy and matter.		
Function			
5.1 Plasma Membrane Structure and Function	2.B.1: Cell membranes are selectively permeable due to their structure. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.D.3: Signal transduction pathways link signal reception with cellular response. 4.C.1: Variation in molecular units provides cells with a wider range of functions.	86-90	3.A.1 • Transport by proteins (88–89) 3.B.2 • Cytokines regulate gene expression to allow for cell replication and division. (90)
5.2 Passive Transport Across a Membrane	2.B.1: Cell membranes are selectively permeable due to their structure. 2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes.	91-94	2.B.2: • Glucose transport (94)
5.3 Active Transport Across a	2.B.2: Growth and dynamic homeostasis	95-97	2.B.2:
0.0 Notive Hansport Across a	2.D.Z. Clowin and dynamic nomeostasis	33 31	2.0.2.

Membrane	are maintained by the constant movement of molecules across membranes.		• Na ⁺ /K ⁺ transport (95–96)
5.4 Modification of Cell Surfaces	2.B.1: Cell membranes are selectively permeable due to their structure. 2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling.	98-100	3.D.2: • Plasmodesmata between plant cells that allow material to be transported from cell to cell (100)
Chapter 6. Metabolism: Energy and Enzymes			
6.1 Cells and the Flow of Energy	2.A.1: All living systems require constant input of free energy.	105-106	
6.2 Metabolic Reactions and Energy Transformations	2.A.1: All living systems require constant input of free energy.	107-108	
6.3 Metabolic Pathways and Enzymes	2.A.1: All living systems require constant input of free energy. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 4.B.1: Interactions between molecules affect their structure and function.	109-113	3.A.1: • Enzymatic reactions (109–113)
6.4 Organelles and the Flow of Energy	2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes.	113-115	
Chapter 7. Photosynthesis			
7.1 Photosynthetic Organisms	2.A.2: Organisms capture and store free energy for use in biological processes.	120-121	
7.2 The Process of Photosynthesis	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	122-123	
7.3 Plants as Solar Energy Converters	2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes. 4.C.1: Variation in molecular units provides cells with a wider range of functions.	124-127	2.A.2: • NADP ⁺ in photosynthesis (125–126) 4.C.1: • Chlorophylls (124)

7.4 Plants as Carbon Dioxide Fixers	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	128-129	2.A.1: • Calvin Cycle (128–129)	
7.5 Other Types of Photosynthesis	2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes.	130-131		
Chapter 8. Cellular Respiration				
Chapter 8. Cellular Respiration				
8.1 Cellular Respiration	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	136-137		
8.2 Outside the Mitochondria: Glycolysis	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	138-139	2.A.1: • Glycolysis (138–139)	
8.3 Outside the Mitochondria: Fermentation	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	140-141	2.A.1: • Fermentation (140–141)	
8.4 Inside the Mitochondria	2.A.1: All living systems require constant input of free energy.2.A.2: Organisms capture and store free energy for use in biological processes.	142-146	2.A.1: • Krebs Cycle (142) 2.A.2: • Oxygen in cellular respiration (144)	
8.5 Metabolic Pool	2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes.	147-148		
Chapter 9. Th e Cell Cycle and Cellular Reproduction				
9.1 The Cell Cycle	2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.A.2: In eukaryotes, heritable information is passed to the next generation via	154-156	2.E.1: • Morphogenesis of fingers and toes (155) 3.B.2: • Cytokines regulate gene expression to allow for cell	

	processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.A.2: In eukaryotes, heritable information		replication and division. (155)
9.2 Mitosis and Cytokinesis	is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization.	157-162	
9.3 The Cell Cycle and Cancer	 2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.3: Signal transduction pathways link signal reception with cellular response. 3.D.4: Changes in signal transduction pathways can alter cellular response. 	163-165	2.D.1: • Cell density (163) 3.A.2: • Cancer results from disruptions in cell cycle control (163–165) 3.B.2: • Changes in p53 activity can result in cancer. (164) 3.D.3: • Receptor tyrosine kinases (164-165) 3.D.4: • Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera (163)
9.4 Prokaryotic Cell Division	3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization.	166-167	
Chapter 10. Meiosis and Sexual Reproduction			
10.1 Halving the Chromosome Number	3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.C.2: Biological systems have multiple processes that increase genetic variation.	172-173	
10.2 Genetic Variation	1.A.2: Natural selection acts on phenotypic variations in populations.3.A.2: In eukaryotes, heritable information	174-175	

10.3 The Phases of Meiosis 10.4 Meiosis Compared to Mitosis	is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.C.2: Biological systems have multiple processes that increase genetic variation. 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.A.2: In eukaryotes, heritable information is passed to the next generation via	176 177-179		
10.5 The Cycle of Life	processes that include the cell cycle and mitosis, or meiosis plus fertilization. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.	180-182		
10.6 Changes in Chromosome Number and Structure	3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.C.1: Changes in genotype can result in changes in phenotype.	183-188	3.A.3: • Trisomy 21/Down Syndrome (184); • Klinefelter Syndrome (185) 3.B.2: • Expression of the SRY gene triggers the male sexual development pathway in animals. (184)	
Chapter 11. Mendelian Patterns of				
11.1 Gregor Mendel	3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring	193-194		
11.2 Mendel's Laws	3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 4.C.1: Variation in molecular units provides cells with a wider range of functions.	195-204	 3.A.3: Civic issues such as ownership of genetic information, privacy, historical contexts, etc. (198–201); Reproduction issues (201–204); Cystic fibrosis (202–203); Huntington's Disease (204) 	

11.3 Extending the Range of Mendelian Genetics	3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 4.C.2: Environmental factors influence the expression of the genotype in an organism.	205-210	4.C.1: • Different types of hemoglobin (203) 3.A.3: • Sickle cell anemia (206-207); • X-linked Color Blindness (209); • Reproduction issues (209–210) 3.A.4: • Sex-linked genes reside on sex chromosomes (X in humans). (208–209); • In mammals and flies, the Y chromosome is very small and carries very few genes. (209); • In mammals and flies, females are XX and males are XY; as such, X-linked recessive traits are always expressed in males. (209) 3.B.2: • Expression of the SRY gene triggers the male sexual development pathway in animals. (208)	
Chapter 12. Molecular Biology of the Gene				
12.1 The Genetic Material	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	215-219		
12.2 Replication of DNA	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.3.C.1: Changes in genotype can result in changes in phenotype.	220-222		

12.3 The Genetic Code of Life	4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	223-224		
12.4 First Step: Transcription	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization.	225-227	3.A.1: • Addition of a poly-A tail (226); • Addition of a GTP cap (226); • Excision of introns (226–227) 3.B.1: • Promoters (225–226); • Terminators (226)	
12.5 Second Step: Translation	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	228-232		
12.6 Structure of the Eukaryotic Chromosome	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	233-234		
Chapter 13. Regulation of Gene Expression				
13.1 Prokaryotic Regulation	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 4.C.2: Environmental factors influence the expression of the genotype in an organism.	238-240	2.C.1: Operons in gene regulation (238–240) 3.B.1: Promoters (238–240) 3.B.2: Levels of cAMP regulate metabolic gene expression in bacteria. (240) 4.C.2: Effect of adding lactose to a Lac + bacterial culture (239–240)	
13.2 Eukaryotic Regulation	2.E.1: Timing and coordination of specific events are necessary for the normal	241-247	3.B.1: • Promoters (241-244);	

	development of an organism, and these events are regulated by a variety of mechanisms. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.C.1: Changes in genotype can result in changes in phenotype.		• Enhancers (244)	
13.3 Gene Mutations	3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.C.1: Changes in genotype can result in changes in phenotype. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history.	247-250	3.D.1: • DNA repair mechanisms (248)	
Chapter 14. Biotechnology and Genomics				
14.1 DNA Cloning	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	255-257	 3.A.1: Plasmid-based transformation (255–256); Polymerase Chain Reaction (PCR) (256); Restriction enzyme analysis of DNA (256–257); Electrophoresis (257) 	
14.2 Biotechnology Products	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	258-259	 3.A.1: Genetically-modified foods (258); Transgenic animals (259); Cloned animals (259); Pharmaceuticals, such as human insulin or factor X (259) 	
14.3 Gene Therapy	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	260		
14.4 Genomics	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.	261-266	3.C.3: • Transposons present in incoming DNA (262)	

Chapter 15. Darwin and Evolution				
15.1 History of Evolutionary Thought	1.A.1: Natural selection is a major mechanism of evolution	272-274		
15.2 Darwin's Theory of Evolution	1.A.1: Natural selection is a major mechanism of evolution. 1.A.2: Natural selection acts on phenotypic variations in populations. 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.C.3: Populations of organisms continue to evolve.	275-280	 1.A.2: Artificial selection (278-279); Peppered moth (279-280); Overuse of antibiotics (279-280) 1.C.3: Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galapagos) (278–280) 	
15.3 Evidence for Evolution	1.A.1: Natural selection is a major mechanism of evolution. 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 3.C.1: Changes in genotype can result in changes in phenotype.	280-286	 1.A.4: Analysis of sequence data sets (285) 3.C.1: Antibiotic resistance mutations (280); Pesticide resistance mutations (280) 	
Chartes 40 Herr Barreletians Freshie				
Chapter 16. How Populations Evolve			1.A.1:	
16.1 Genes, Populations, and Evolution	1.A.1: Natural selection is a major mechanism of evolution 1.A.2: Natural selection acts on phenotypic variations in populations 1.A.3: Evolutionary change is also driven by random processes 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics.	290-295	 Graphical analysis of allele frequencies in a population (293) Application of Hardy-Weinberg Equation (291) 1.A.2: Peppered moth (290–292) 1.A.4: Graphical analyses of allele frequencies in a population (293) 	
16.2 Natural Selection	1.A.1: Natural selection is a major mechanism of evolution. 1.A.2: Natural selection acts on phenotypic variations in populations.	296-299		
16.3 Maintenance of Diversity	1.A.1: Natural selection is a major mechanism of evolution. 1.A.2: Natural selection acts on phenotypic variations in populations.	300-303	1.A.2: • Sickle cell anemia (302–303) 3.C.1:	

	3.C.1: Changes in genotype can result in changes in phenotype. 4.C.1: Variation in molecular units provides cells with a wider range of functions.		Sickle cell disorder and heterozygote advantage (302–303)	
Chapter 17. Speciation and Macroevolution				
17.1 How New Species Evolve	1.C.1: Speciation and extinction have occurred throughout the Earth's history. 1.C.3: Populations of organisms continue to evolve.	307-312		
17.2 Modes of Speciation	1.C.1: Speciation and extinction have occurred throughout the Earth's history. 1.C.2: Speciation may occur when two populations become reproductively isolated from each other. 1.C.3: Populations of organisms continue to evolve.	313-317		
17.3 Principles of Macroevolution	1.C.1: Speciation and extinction have occurred throughout the Earth's history. 1.C.2: Speciation may occur when two populations become reproductively isolated from each other. 1.C.3: Populations of organisms continue to evolve. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression.	318-323	3.B.2: • HOX genes play a role in development. (320–322)	
Chapter 18. Origin and History of Life				
18.1 Origin of Life	1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence.	328-332		
18.2 History of Life	1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.B.1: Organisms share many conserved core processes and features that evolved.	333-341		

	and are widely distributed among organisms today. 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. 2.A.2: Organisms capture and store free energy for use in biological processes. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.			
18.3 Geological Factors That Influence Evolution	1.C.1: Speciation and extinction have occurred throughout the Earth's history. 4.B.4: Distribution of local and global ecosystems changes over time.	342-344	1.C.1: • Five major extinctions (343–344) 4.B.4: • Continental Drift (342–343); • Meteor Impact on Dinosaurs (343–344)	
Chapter 19. Taxonomy, Systematics,				
and Phylogeny				
19.1 Systematic Biology	1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	348-350		
19.2 The Three-Domain System	1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	351-353		
19.3 Phylogeny	1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	354-359	 1.A.4: Analysis of phylogenetic trees (355); Construction of phylogenetic trees based on sequence data (358) 1.B.2: mammalian evolution including opposable thumb (355) (plus other examples); chordate development (356); primate evolution (358-359) 	
Chapter 20. Viruses, Bacteria, and Archaea				
20.1 Viruses, Viroids, and Prions	1.C.3: Populations of organisms continue	364-371	1.C.3:	

	to evolve. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.		• Emergent diseases (369-371)
20.2 The Prokaryotes	 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 3.C.2: Biological systems have multiple processes that increase genetic variation. 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts. 	371-373	2.D.2: • Osmoregulation in bacteria, fish, and protists (372) 3.C.3: • Transduction in bacteria (373)
20.3 The Bacteria	1.A.2: Natural selection acts on phenotypic variations in populations. 1.C.3: Populations of organisms continue to evolve. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.D.4: Changes in signal transduction pathways can alter cellular response. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	374-377	 1.A.2: Overuse of antibiotics (376-377) 1.C.3: Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) (376–377) 2.D.1: Algal blooms (377) 2.E.3: Mutualistic relationships (lichens; bacteria in digestive tracts of animals; mycorrhizae (375, 377) 3.D.4: Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera (374); Effects of neurotoxins, poisons, pesticides (376) 4.B.2: Bacterial community in the rumen

			of animals (375)	
20.4 The Archaea	3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	378-379	3.D.1: • Use of chemical messengers by microbes to communicate with nearby cells and to regulate specific pathways in response to population density (Quorum sensing) (378) 3.D.2: • Quorum sensing in bacteria (378) 4.B.2: • Bacterial community in and around deep sea vents (379)	
Chapter 21. Protist Evolution and Diversity				
21.1 General Biology of Protists				384
21.2 Diversity of Protists	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.B.4: Distribution of local and global ecosystems changes over time. 4.C.3: The level of variation in a population affects population dynamics.	391-392, 395	2.D.1: • Algal blooms (392) 2.D.2: • Osmoregulation in bacteria, fish, and protists (395) 4.B.4: • Potato blight (391) 4.C.3: • Potato blight causing the potato famine (391)	384-390, 393-394, 396-400
Chapter 22. Fungi Evolution and Diversity				
22.1 Evolution and Characteristics of Fungi	2.C.2: Organisms respond to changes in their external environments.	405	2.C.2: • Chemotaxis in bacteria, sexual reproduction in fungi (405)	404
22.2 Diversity of Fungi	2.C.2: Organisms respond to changes in their external environments. 2.E.2: Timing and coordination of physiological events are regulated by	406-410, 412- 413	2.C.2: • Chemotaxis in bacteria, sexual reproduction in fungi (406-408)	411

	multiple mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.B.4: Distribution of local and global ecosystems changes over time. 4.C.3: The level of variation in a population affects population dynamics.		2.E.2: • Fruiting body formation in fungi, slime molds, and certain types of bacteria (407–409) 2.E.3: • Availability of resources leading to fruiting body formation in fungi and certain types of bacteria (407–409, 412-413) 4.B.3 & 4.B.4: • Dutch Elm Disease (410) 4.C.3: • Corn rust affects on agricultural	
22.3 Symbiotic Relationships of Fungi	2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection.	414-415	crops (413) 2.E.3: • Mutualistic relationships (lichens; bacteria in digestive tracts of animals; mycorrhizae (414–415)	
Chapter 23. Plant Evolution and				
Diversity 23.1 The Green Algal Ancestor of Plants	1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of	420-422	1.B.2: • evolutionary plant history (420-	
23.2 Evolution of Bryophytes:	evolutionary history that can be tested.		422)	
Colonization of Land				423-425
23.3 Evolution of Lycophytes: Vascular Tissue				426
23.4 Evolution of Pteridophytes: Megaphylls				427-429
23.5 Evolution of Seed Plants: Full Adaptation to Land				430-439
Chapter 24. Flowering Plants: Structure and Organization				
24.1 Organs of Flowering Plants	4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.	444-446	4.A.4: • Root, stem, and leaf (444–446)	
24.2 Tissues of Flowering Plants	2.D.4: Plants and animals have a variety of chemical defenses against infections	447-450	2.D.4: • Plant defenses against	

	that affect dynamic homeostasis. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.		pathogens include molecular recognition systems with systemic responses; infection triggers chemical responses that destroy infected and adjacent cells by apoptosis, thus localizing the effects. (448) 4.A.4: • Root, stem, and leaf (447–449); • Plant vascular and leaf (449) 4.B.2:	
24.3 Organization and Diversity of Roots	4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.	450-452	 Circulation of fluids (449–450) 4.A.4: Root, stem, and leaf (450-452); Plant vascular and leaf (450-452) 	
24.4 Organization and Diversity of Stems	4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.	453-459	4.A.4: • Root, stem, and leaf (453–459); • Plant vascular and leaf (453–459)	
24.5 Organization and Diversity of Leaves	4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	459	,	460-461
Chapter 25. Flowering Plants: Nutrition and Transport				
25.1 Plant Nutrition and Soil	2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.	465-468	2.A.3: • Root hairs (467)	
25.2 Water and Mineral Uptake	2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	469-471	2.A.3: • Root hairs (469–471)	

	-		-	
25.3 Transport Mechanisms in Plants	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	472-479	2.C.1: • Plant responses to water limitations (473-477) 2.D.2: • Osmoregulation in aquatic and terrestrial plants (475–478); • Gas exchange in aquatic and terrestrial plants (476–478) 2.E.3: • Mutualistic relationships (lichens; bacteria in digestive tracts of animals; mycorrhizae (472) 4.B.2: • Exchange of gases (477–478); • Circulation of fluids (474–479)	
Chapter 26. Flowering Plants: Control				
of Growth Responses				
26.1 Plant Hormones	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.3: Signal transduction pathways link signal reception with cellular response.	484-489	2.C.1: • Ripening of fruit (489) 3.B.2: • Cytokines regulate gene expression to allow for cell replication and division. (484-485); • Gibberellin promotes seed germination in plants. (486–488); • Ethylene levels cause changes in the production of different enzymes, allowing fruit ripening. (488–489)	
26.2 Plant Responses	2.C.2: Organisms respond to changes in their external environments.2.D.4: Plants and animals have a variety	490-498	2.C.2:Photoperiodism and phototropism in plants (494–496);	

	of chemical defenses against infections that affect dynamic homeostasis. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.D.3: Signal transduction pathways link signal reception with cellular response. 4.C.2: Environmental factors influence the expression of the genotype in an organism.		Nocturnal and diurnal activity: circadian rhythms (494–495) 2.E.2: Diurnal/ nocturnal and sleep/awake cycles (491) 2.E.3: Mutualistic relationships (lichens; bacteria in digestive tracts of animals; mycorrhizae (498) 3.D.2: Plant immune response (498) 4.C.2: Alterations in timing of flowering due to climate changes (494–496)	
Chapter 27. Flowering Plants: Reproduction				
27.1 Sexual Reproductive Strategies	2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.E.1: Individuals can act on information and communicate it to others.	502-507	2.E.1: • Flower development (502–505) 2.E.3: • Biology of pollination (506–507) 3.E.1: • Coloration in flowers (506–507)	
27.2 Seed Development				508-510
27.3 Fruit Types and Seed Dispersal				511-512
27.4 Asexual Reproductive Strategies				513-514
Chapter 28. Invertebrate Evolution				
28.1 Evolution of Animals	3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression.	524	3.B.2:HOX genes play a role in development. (524)	520-523, 525-526
28.2 The Simplest Invertebrates				527-529
28.3 Diversity Among the Lophotrochozoans				530-538

28.4 Diversity of the Ecdysozoans				538-543
28.5 Invertebrate Deuterostomes				544-545
Chapter 29. Vertebrate Evolution				
29.1 The Chordates	1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	550-551	1.B.2: • chordate development (550-551)	
29.2 The Vertebrates				552-553
29.3 The Fishes	2.A.1: All living systems require constant input of free energy.	553	2.A.1: • Ectothermy is the use of external thermal energy to help regulate and maintain body temperature. (553)	554-555
29.4 The Amphibians	2.A.1: All living systems require constant input of free energy.	556	2.A.1: • Ectothermy is the use of external thermal energy to help regulate and maintain body temperature. (556)	557
29.5 The Reptiles	2.A.1: All living systems require constant input of free energy.4.B.4: Distribution of local and global ecosystems changes over time.	558-559, 563	2.A.1: • Endothermy is the use of thermal energy generated by metabolism to maintain homeostatic body temperatures. (563); • Ectothermy is the use of external thermal energy to help regulate and maintain body temperature. (558) 4.B.4: • Meteor Impact on Dinosaurs (559)	560-562
29.6 The Mammals				564-566
Chapter 30. Human Evolution				
30.1 Evolution of Primates	1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.	571-575	1.B.2: • primate evolution (571-575)	
30.2 Evolution of Humanlike Hominins				575-578
30.3 Evolution of Early Genus Homo				578-579
30.4 Evolution of Later Genus Homo				579-583
Chapter 31. Animal Organization and Homeostasis				

31.1 Types of Tissues				588-594
31.2 Organs, Organ Systems, and Body Cavities				595-596
31.3 The Integumentary System	4.C.2: Environmental factors influence the expression of the genotype in an organism.	598	4.C.2: • Effect of increased UV on melanin production in animals (598)	597
31.4 Homeostasis	2.A.1: All living systems require constant input of free energy. 2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.	599-601	2.C.1: • Temperature regulation in animals (600–601); • Onset of labor in childbirth (601) 2.C.2: • Shivering and sweating in humans (600–601)	
Chapter 32. Circulation and Cardiovascular Systems				
32.1 Transport in Invertebrates	4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	606-607	4.B.2: • Circulation of fluids (606-607)	
32.2 Transport in Vertebrates	1.C.3: Populations of organisms continue to evolve. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	608-609	1.C.3: • A eukaryotic example that describes evolution of a structure of process such as heart chambers, limbs, brain, and immune system (608-609) 4.A.4: • Respiratory and circulatory (608-609) 4.B.2:	
32.3 The Human Cardiovascular System	2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 3.D.4: Changes in signal transduction pathways can alter cellular response.	609-617	Circulation of fluids (608-609) 2.D.2: Circulatory systems in fish, amphibians, and mammals (609) 3.D.4: Diabetes, heart disease,	

	4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.		neurological disease, autoimmune disease, cancer, cholera (612-613) 4.A.4: • Respiratory and circulatory (610–615) 4.B.2: • Circulation of fluids (610-617)	
32.4 Blood	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	618-623	2.C.1: • Blood clotting (620–621) 4.A.4: • Respiratory and circulatory (621) 4.B.2: • Circulation of fluids (618–623)	
Chapter 33. The Lymphatic and Immune Systems				
33.1 Evolution of Immune Systems	2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.	627-628	2.D.4: • Invertebrate immune systems have nonspecific response mechanisms, but they lack pathogen-specific defense responses. (627-628)	
33.2 The Lymphatic System	2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.	629-630		628
33.3 Innate Immune Defenses	2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 4.C.3: The level of variation in a population affects population dynamics.	630-633	2.D.3: Immunological responses to pathogens, toxins and allergens (631–633); Physiological responses to toxic substances (632) 2.D.4: Vertebrate immune systems have non-specific and non-heritable defense mechanisms against pathogens. (630–633)	

			4.C.3: Not all individuals in a population in a disease outbreak are equally affected; some may not show symptoms, have mild symptoms or may be naturally immune and resistant to the disease. (630–632)
33.4 Adaptive Immune Defenses	2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis. 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.D.4: Changes in signal transduction pathways can alter cellular response. 4.C.1: Variation in molecular units provides cells with a wider range of functions.	633-640	 2.D.3: Immunological responses to pathogens, toxins and allergens (633–639) 2.D.4: Vertebrate immune systems have non-specific and non-heritable defense mechanisms against pathogens. (633) 2.E.1: Immune function (633–639) 3.B.2: Cytokines regulate gene expression to allow for cell replication and division. (634, 637) 3.D.2: Immune cells interact by cell-cell contact, antigen-presenting-cells (APCs), helper T-cells, killer T-cells. (633–636) 4.C.1: Molecular diversity of antibodies in response to an antigen (634–635); MHC Proteins (635–636)
33.5 Immune System Disorders and Adverse Reactions	2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 3.D.4: Changes in signal transduction pathways can alter cellular response. 4.C.1: Variation in molecular units provides cells with a wider range of	641-643	2.D.3: • Immunological responses to pathogens, toxins and allergens (641–642) 3.D.4:

	functions.		Drugs (Hypertensives, Anesthetics, Antihistamines, and Birth Control) (641-642); Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera (642-643) 4.C.1: MHC Proteins (643)	
Chapter 34. Digestive Systems and Nutrition				
34.1 Digestive Tracts	2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.	647-649	 2.D.2: Digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, one-way digestive systems (647–649) 	
34.2 The Human Digestive System	2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	650-656	2.A.3: • Cells of the villi (652–653); • Microvilli (652–653) 4.A.4: • Stomach and small intestines (652–654) 4.B.2: • Digestion of food (650–655)	
34.3 Digestive Enzymes	2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	656	3.A.1: • Degradation (656) 4.B.2: • Digestion of food (656)	
34.4 Nutrition and Human Health	3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	657-659	3.A.1: • Degradation (657-659)	660

Chapter 35. Respiratory Systems				
35.1 Gas Exchange Surfaces	2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	664-668	2.A.3: • Cells of the alveoli (668) 2.D.2: • Respiratory systems of aquatic and terrestrial animals (664–668) 4.B.2: • Exchange of gases (664–668)	
35.2 Breathing and Transport of Gases	2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	669-672	4.A.4: • Respiratory and circulatory (671–672) 4.B.2: • Exchange of gases (669–672)	
35.3 Respiration and Human Health	1.A.2: Natural selection acts on phenotypic variations in populations	679	1.A.2: • Overuse of antibiotics (679)	673-676
Chapter 36. Body Fluid Regulation				
and Excretory Systems				
36.1 Animal Excretory Systems	2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	681-683	 2.D.2: Excretory systems in flatworms, earthworms, and vertebrates (681–683); Osmoregulation in bacteria, fish, and protists (683); Nitrogenous waste production and elimination in aquatic and terrestrial animals (681-683) 2.D.3: Dehydration (683) 	

			4.B.2:	
36.2 The Human Urinary System	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	684-690	Excretion of wastes (681–683) 2.C.1: Dehydration in response to decreased ADH (688) 2.D.2: Nitrogenous waste production and elimination in aquatic and terrestrial animals (684-690) 2.D.3: Dehydration (684, 688) 4.A.4: Kidney and bladder (684) 4.B.2: Excretion of wastes (684–690)	
Chapter 37. Neurons and Nervous Systems				
37.1 Evolution of the Nervous System	1.C.3: Populations of organisms continue to evolve. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	694-696	1.C.3: A eukaryotic example that describes evolution of a structure of process such as heart chambers, limbs, brain, and immune system (694–696)	
37.2 Nervous Tissue	3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.D.3: Signal transduction pathways link signal reception with cellular response. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	697-701	3.D.2: • Neurotransmitters (700–701) 3.D.3: • Ligand-gated ion channels (698-699) 3.E.2: • Acetylcholine (700); • Norepinephrine (700); • Dopamine (700); • Serotonin (700);	

37.3 The Central Nervous System	3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	702-706	 3.E.2: Right and left cerebral hemispheres in humans (703–704); Abstract thought and emotions (703–705); Forebrain (cerebrum), midbrain (brainstem), and hindbrain (cerebellum) (703–705) 	
37.4 The Peripheral Nervous System	3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.4: Changes in signal transduction pathways can alter cellular response. 3.E.1: Individuals can act on information and communicate it to others. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	706-713	3.D.1: • Epinephrine stimulation of glycogen breakdown in mammals (713) 3.D.4: • Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera (706-707) 3.E.1: • Fight or flight response (713) 3.E.2: • Acetylcholine (713); • Epinephrine (713); • Norepinephrine (713) 4.A.4: • Nervous and muscular (707–708)	
Chapter 38. Sense Organs				
38.1 Sensory Receptors	3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.	717		
38.2 Chemical Senses	3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.	718-719		
38.3 Sense of Vision	3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.	720-725	3.E.2: • Vision (720–725)	
38.4 Senses of Hearing and Balance	3.E.2: Animals have nervous systems that	726-730	3.E.2:	

	detect external and internal signals, transmit and integrate information, and produce responses.		• Hearing (726–730)	
38.5 Somatic Senses				730-731
Chapter 39. Locomotion and Support Systems				
39.1 Diversity of Skeletons	4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	736-737		
39.2 The Human Skeletal System	4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	738-743		
39.3 The Muscular System	3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	744-749	3.E.2:• Muscle movement (744–749)4.A.4:• Nervous and muscular (744–749)	
Chapter 40. Hormones and Endocrine Systems				
40.1 Animal Hormones	2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.3: Signal transduction pathways link signal reception with cellular response. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	753-756	3.D.1: • Epinephrine stimulation of glycogen breakdown in mammals (755-756) 3.D.3: • G-protein linked receptors (756); • Second messengers such as: cyclic GMP, cyclic AMP calcium ions (Ca ²⁺), and inositol triphosphate (IP ₃) (756)	
40.2 Hypothalamus and Pituitary Gland	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.D.3: Biological systems are affected by	757-759	2.C.1: • Lactation in mammals (757); • Dehydration in response to decreased ADH (757)	

	disruptions to their dynamic homeostasis. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.		2.D.3: • Dehydration (757) 3.D.2: • Human Growth Hormone (757–759) 3.E.2: • Neuro-hormone production (757)	
40.3 Other Endocrine Glands and Hormones	2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 3.D.4: Changes in signal transduction pathways can alter cellular response. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	760-769	2.C.1: Graves' disease (761) (hyperthyroidism); Diabetes mellitus in response to decreased insulin (765–767) 2.C.2: Nocturnal and diurnal activity: circadian rhythms (768) 2.E.2: Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues (768); Diurnal/nocturnal and sleep/awake cycles (768) 3.A.4: Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males. (768) 3.D.1; Epinephrine stimulation of	

			glycogen breakdown in mammals (762-763) 3.D.2: • Thyroid hormones (760–761); • Insulin (765–767); • Testosterone (767); • Estrogen (767–768) 3.D.4: • Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera (766-767)	
Chapter 41. Reproductive Systems				
41.1 How Animals Reproduce				773-774
41.2 Human Male Reproductive System	4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.	775-778		
41.3 Human Female Reproductive System	 2.C.1: Organisms use negative feedback mechanisms to maintain their internal environments and respond to external environmental changes. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter. 	779-783	2.C.1: • Lactation in mammals (782–783)	
41.4 Control of Human Reproduction	3.D.4: Changes in signal transduction pathways can alter cellular response.	783-784	3.D.4: • Drugs (Hypertensives, Anesthetics, Antihistamines, and Birth Control) (783–784)	785-786
41.5 Sexually Transmitted Diseases				787-791
Chapter 42. Animal Development and Aging				
42.1 Early Developmental Stages	2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms.	796-799		
42.2 Developmental Processes	2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of	800-804	2.E.1: • <i>C. elegans</i> development (802) 3.B.2:	

	mechanisms. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs. 2.E.1: Timing and coordination of specific		Morphogens stimulate cell differentiation and development. (800–804) 3.D.2: Morphogens in embryonic development (802)	
42.3 Human Embryonic and Fetal Development	events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms.	804-810		
42.4 The Aging Process				811-814
Chapter 43. Behavioral Ecology				
43.1 Inheritance Influences Behavior	2.C.2: Organisms respond to changes in their external environments. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection.	820-821		
43.2 The Environment Influences Behavior	2.C.2: Organisms respond to changes in their external environments. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.E.1: Individuals can act on information and communicate it to others.	822-826	2.C.2: • Hibernation and migration in animals (825) 2.E.2: • Seasonal responses, such as hibernation, estivation, and migration (825) 2.E.3: • Migration (825) 3.E.1: • Avoidance responses (824); • Migration patterns (825)	
43.3 Animal Communication	2.C.2: Organisms respond to changes in their external environments.	826-830	2.E.2: • Release and reaction to	

	2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.E.1: Individuals can act on information and communicate it to others.		pheromones (826); • Visual displays in reproductive cycle (828–829) 3.D.1: • Use of pheromones to trigger reproduction and developmental pathways (826–828) 3.E.1: • Predator warnings (828); • Birds songs (828); • Bee dances (829–830)	
43.4 Behaviors That Increase Fitness	2.C.2: Organisms respond to changes in their external environments. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.E.1: Individuals can act on information and communicate it to others.	830-834	2.E.3: Courtship (831–833) 3.E.1: Protection of young (830); Territorial marking in mammals (830); Foraging in bees and other animals (830–831); Courtship and mating behaviors (831–833); Pack behavior in animals (833); Colony and swarming behavior in insects (833); Herd, flock, and schooling behavior in animals (834); Parent and offspring interactions (834)	
Chapter 44. Population Ecology				
44.1 Scope of Ecology	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy.	839		
44.2 Demographics of Populations	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter	840-842	2.D.1: • Temperature (840); • Sunlight (840); • Population density (840)	

	and free energy. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 2.D.1: All biological systems from cells		
44.3 Population Growth Models	and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance.	843-845	
44.4 Regulation of Population Size	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance.	846-848	2.D.1: • Population density (847) 2.D.3: • Hurricanes, floods, earthquakes, volcanoes, fires (847)
44.5 Life History Patterns	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.5: Communities are composed of populations of organisms that interact in complex ways.	848-850	
44.6 Human Population Growth	4.A.5: Communities are composed of populations of organisms that interact in complex ways.	851-853	
Chapter 45. Community and			

Ecosystem Ecology				
45.1 Ecology of Communities	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.E.1: Individuals can act on information and communicate it to others. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance.	858-867	2.D.1: Predator-prey relationships (860–864); Symbiosis (mutualism, commensalism, parasitism) (864–866) 2.E.3: Niche and resource partitioning (860); Mutualistic relationships (lichens; bacteria in digestive tracts of animals; mycorrhizae (866); 3.E.1: Coloration (863–864) 4.A.5: Graphical representation of field data (860); Predator/prey relationships spreadsheet model (863); Symbiotic relationship (864–866)	
45.2 Community Development	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.B.4: Distribution of local and global ecosystems changes over time.	868-869	4.B.4: • Continental Drift (868)	
45.3 Dynamics of an Ecosystem	 2.A.1: All living systems require constant input of free energy. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. 2.D.1: All biological systems from cells 	870-879	2.A.1: • Change in the producer level can affect the number and size of other trophic levels. (870, 873); • Food chains and food webs (870–874); • Change in energy	

	and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.		resources levels such as sunlight can affect the number and size of the trophic levels. (873) 2.D.1: • Water and nutrient availability, temperature, salinity, pH (870); • Water availability (875) 4.A.5: • Global climate change models (879)	
Chapter 46. Major Ecosystems of the Biosphere				
46.1 Climate and the Biosphere	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.	884-886		
46.2 Terrestrial Ecosystems	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.	887-896		
46.3 Aquatic Ecosystems	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 4.B.4: Distribution of local and global ecosystems changes over time.	897-904	4.B.4: • El Niño (904)	

Chapter 47. Conservation of Biodiversity			
47.1 Conservation Biology and Biodiversity	1.A.2: Natural selection acts on phenotypic variations in populations. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.C.3: The level of variation in a population affects population dynamics. 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem.	908-909	 1.A.2: Loss of genetic diversity within a crop species (908) 4.C.3: California condor (908); Black-footed ferrets (909)
47.2 Value of Biodiversity	2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.C.3: The level of variation in a population affects population dynamics. 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem.	910-913	2.D.1; • Species diversity (910–913) 2.D.3: • Water limitation (912)
47.3 Causes of Extinction	1.C.1: Speciation and extinction have occurred throughout the Earth's history. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.B.4: Distribution of local and global ecosystems changes over time. 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem.	913-918	1.C.1: • Human impact on ecosystems and species extinction rates (913–914) 2.D.3: • Invasive and/or eruptive species (913–915); • Human Impact (913–918) 4.A.5: • Introduction of species (913–915); • Global climate change models (915–916) 4.B.3: • Kudzu (914–915); • Loss of keystone species (918)

			 4.B.4: Logging, slash and burn agriculture, urbanization, monocropping, infrastructure development (dams, transmission lines, roads), and global climate change threaten ecosystems and life on Earth. (913–917); An introduced species can exploit a new niche free of predators or competitors, thus exploiting new resources. (913–915)
47.4 Conservation Techniques	4.B.4: Distribution of local and global ecosystems changes over time.	918-920	4.B.4: • Logging, slash and burn agriculture, urbanization, mono- cropping, infrastructure development (dams, transmission lines, roads), and global climate change threaten ecosystems and life on Earth. (918)