AP Physics C: Electricity & Magnetism
1999 Scoring Guidelines

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
E & M 1 (15 points)

(a) 4 points

For using the relationship between potential and charge
\[V = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r} \]
1 point

Solving for \(Q \):
\[Q = 4\pi \varepsilon_0 V r \]
1 point

For correct substitutions for the potential and radius
\[Q_0 = 4\pi \varepsilon_0 (-2000 \text{ V})(0.20 \text{ m}) \quad \text{or} \quad (-2000 \text{ V})(0.20 \text{ m})/(9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \]
1 point

\[Q_0 = -1600\pi \varepsilon_0 \text{ C} \quad \text{or} \quad -4.4 \times 10^{-8} \text{ C} \]
1 point

For the correct magnitude of \(Q_0 \)
For the negative sign
1 point

(b) 5 points

i. For indicating that the electric field is zero
1 point

ii. The charge on the sphere can be treated as a point charge at its center
\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q_0}{r^2} \]

\[E = (9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \left(\frac{4.4 \times 10^{-8} \text{ C}}{r^2} \right) \]

\[E = \frac{396}{r^2} \text{ N/C} \quad \text{or} \quad \frac{400}{r^2} \text{ N/C} \quad \text{where } r \text{ is in meters} \]
1 point

iii. For indicating that the electric field is zero
1 point

iv. For indicating that the electric field is zero
1 point

For having all four answers correct OR for some mention of using the enclosed charge OR for some mention of Gauss’ law
1 point
1999 Physics C Solutions

E & M 1 (continued)

(c) 3 points

\[\Delta V = V_b - V_a = - \int_a^b E \, dr \]

For recognition of the need to take the difference of the potentials at radii \(a \) and \(b \), or for writing the definite integral (with limits)

\[|\Delta V| = \frac{Q_0}{4\pi\varepsilon_0} \int_a^b \frac{dr}{r^2} \]

\[= \frac{Q_0}{4\pi\varepsilon_0} \left(\frac{1}{r} \right)_a^b \]

\[|\Delta V| = \frac{Q_0}{4\pi\varepsilon_0} \left(\frac{1}{b} - \frac{1}{a} \right) \]

For correct substitution of variables or numerical values for \(Q_0, a, \) and \(b \) 1 point

For the correct answer 1 point

\[|\Delta V| = \frac{5Q_0}{8\pi\varepsilon_0} \quad \text{or} \quad 1000 \, \text{V} \]

(Alternate solution)

\[\Delta V = V_b - V_a \]

\[\Delta V = \frac{Q_0}{4\pi\varepsilon_0} \left(\frac{1}{r_b} \right) - \frac{Q_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} \right) \]

For correct substitution of \(Q_0, a, \) and \(b \) 1 point

For the correct answer 1 point

\[|\Delta V| = \frac{5Q_0}{8\pi\varepsilon_0} \quad \text{or} \quad 1000 \, \text{V} \]

(Alternate solution)

\[V = \frac{Q}{C} \]

For using the above relationship 1 point

For substituting \(Q_0 \) from part (a) and \(C \) from part (d) alternate solution 1 point

For the correct answer 1 point

\[|\Delta V| = \frac{5Q_0}{8\pi\varepsilon_0} \quad \text{or} \quad 1000 \, \text{V} \]
E & M 1 (continued)

(d) 2 points

\[C = \frac{Q_0}{V} \]

For using the above relationship
For substituting \(Q_0 \) from part (a) and \(\Delta V \) from part (c)

\[C = \frac{4.4 \times 10^{-8} \text{ C}}{1000 \text{ V}} \]
\[C = 4.4 \times 10^{-11} \text{ F} \]

(Alternate solution)
For writing the equation for the capacitance of the spherical capacitor

\[C = \frac{4\pi\varepsilon_0 ab}{b-a} \]

\[C = \frac{(0.02 \text{ m})(0.04 \text{ m})}{(9 \times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2)(0.04 \text{ m} - 0.02 \text{ m})} \]

For the correct answer
\[C = 4.4 \times 10^{-11} \text{ F} \]

For correct units on two answers and no incorrect units 1 point
E & M 2 (15 points)

(a) 5 points

For using Faraday’s law for a loop
\[\mathcal{E} = -\frac{d\phi}{dt} \quad \text{or} \quad \mathcal{E} = -\Delta\phi / \Delta t \]

1 point

For relating magnetic flux to magnetic field and area
\[\frac{d\phi}{dt} = A \frac{dB}{dt} \quad \text{or} \quad \frac{\Delta\phi}{\Delta t} = A \frac{\Delta B}{\Delta t} \]

1 point

For using the proper expression for the area of a loop
\[A = \pi r^2 \]

1 point

\[\mathcal{E} = \pi r^2 \frac{dB}{dt} \quad \text{or} \quad \mathcal{E} = \pi r^2 \frac{\Delta B}{\Delta t} \]

1 point

For using the correct radius, i.e. the radius of the field
\[\mathcal{E} = \pi(0.6 \text{ m})^2 (0.40 \text{ T/s}) \]

1 point

For computing the correct answer
\[\mathcal{E} = 0.45 \text{ V} \]

1 point

(b) 3 points

For any statement of Ohm’s law
\[V = IR \]

1 point

Solving for the current:
\[I = \frac{V}{R} = \frac{E}{R} \]

For computing the correct answer
\[I = 0.090 \text{ A} \]

1 point

For indicating a clockwise direction for the current

1 point

(c) 3 points

For relating the energy dissipated to the power in the resistor
\[E = \int P \, dt \quad \text{or} \quad E = Pt \]

1 point

For an expression for electric power
\[P = I^2 R \quad \text{or} \quad \frac{V^2}{R} \quad \text{or} \quad IV \]

1 point

Example using \(P = I^2 R \):
\[E = I^2 R t \]

For computing the correct answer
\[E = (0.090 \text{ A})^2 (5.0 \text{ } \Omega)(15 \text{ s}) \]

1 point

\[E = 0.61 \text{ J} \]
1999 Physics C Solutions

E & M 2 (continued)

(d) 3 points

For stating that the brightness of the bulb will be less 1 point
For indicating that the reduction in brightness is due to a decrease in current or a decrease in the emf 1 point
For indicating that the decrease in current or emf, or the reduction in brightness, is due to a decrease in the area of the loop or a decrease in the changing flux 1 point

For using correct units with three numerical answers 1 point
E & M 3 (15 points)

(a) 3 points

The charge on any section of the ring is equidistant from a point on the x-axis, so one can write an equation in terms of the single distance r

For a correct expression of the potential

$$\frac{1}{4\pi\epsilon_0} \frac{dq}{r} \quad \text{or} \quad \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

For a correct expression for the distance of the charge from location x

$$r = \sqrt{x^2 + R^2}$$

For the correct answer

$$\frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{x^2 + R^2}}$$

Alternate solution

For correctly expressing the potential as an integral of the electric field

$$dV = -\int E \, dr$$

For a correct expression for the field

$$dV = -\int \frac{1}{4\pi\epsilon_0} \frac{Qx}{(x^2 + R^2)^{3/2}} \, dx$$

For correctly integrating to get the final answer

$$\frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{x^2 + R^2}}$$

(b)

i. 3 points

$$E = -\frac{dV}{dr}$$

For using the above relationship

For taking the derivative with respect to x 1 point

For using the expression for V obtained in part (a)

$$E_x = -\frac{d}{dx} \left(\frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{x^2 + R^2}} \right)$$

$$E_x = \frac{1}{4\pi\epsilon_0} \frac{Qx}{(x^2 + R^2)^{3/2}}$$
Alternate solution

Calculating the field by integration:

$$E = \int dE_x = \int dE \cos \theta,$$
where θ is the angle between the x-axis and the distance vector \mathbf{r}.

For using the horizontal component of the field

For using a correct expression of Coulomb's law

$$E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2}$$

For indicating that the integral is over the charge

$$E_x = \int \frac{1}{4\pi \varepsilon_0} \frac{dq}{r^2} \cos \theta$$

Substituting $\cos \theta = x/r$ and $r = \sqrt{x^2 + R^2}$

$$E_x = \frac{1}{4\pi \varepsilon_0} \frac{Q}{(x^2 + R^2)^{3/2}} \int dq$$

$$E_x = \frac{1}{4\pi \varepsilon_0} \frac{Qx}{(x^2 + R^2)^{3/2}}$$

ii. 1 point

For any indication that the y- and z-components are zero or cancel 1 point
(c)

i. 2 points

For taking the derivative of E with respect to x and setting it equal to zero

$$\frac{dE_x}{dx} = \frac{d}{dx} \left(\frac{1}{4\pi \varepsilon_0} \frac{Qx}{(x^2 + R^2)^{\frac{3}{2}}} \right) = 0$$

$$\frac{Q}{4\pi \varepsilon_0} \left(\frac{1}{(x^2 + R^2)^{\frac{3}{2}}} + \left(-\frac{3}{2} \right) \frac{2x^2}{(x^2 + R^2)^{\frac{5}{2}}} \right) = 0$$

$$\frac{1}{(x^2 + R^2)^{\frac{3}{2}}} - \frac{3x^2}{(x^2 + R^2)^{\frac{5}{2}}} = 0$$

$$\frac{1}{(x^2 + R^2)^{\frac{3}{2}}} = \frac{3x^2}{(x^2 + R^2)^{\frac{5}{2}}}$$

$$1 = \frac{3x^2}{x^2 + R^2}$$

$$3x^2 = x^2 + R^2$$

$$x = \pm \frac{R}{\sqrt{2}}$$ and the maximum occurs at the positive value of x

For the correct answer

$$x = + \frac{R}{\sqrt{2}}$$

1 point

ii. 1 point

For substituting the answer from part (c)i into the given expression for the electric field

$$E_{x\ max} = \frac{1}{4\pi \varepsilon_0} \frac{Q(R/\sqrt{2})}{((R/\sqrt{2})^2 + R^2)^{\frac{3}{2}}}$$

$$E_{x\ max} = \frac{1}{4\pi \varepsilon_0} \frac{2Q}{3\sqrt{2}R^2}$$

1 point
E & M 3 (continued)

(d) 3 points

For a curve in the first quadrant displaying a single positive maximum 1 point
For a curve passing through the origin 1 point
For the negative reflection of the first quadrant curve in the third quadrant 1 point

(e) 2 points

For any statement that describes the subsequent motion as oscillating, periodic etc. 2 points

One point was awarded for a statement that only described the electron as moving toward the ring or along the x-axis.