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1. A particle moves in the xy{plane so that its position at any time t, 0 � t � �, is given by

x(t) =
t2

2
� ln(1 + t) and y(t) = 3 sin t.

(a) Sketch the path of the particle in the xy{plane below. Indicate the direction of motion along the
path.

(b) At what time t, 0 � t � �, does x(t) attain its minimum value? What is the position (x(t); y(t)) of
the particle at this time?

(c) At what time t, 0 < t < �, is the particle on the y{axis? Find the speed and the acceleration vector
of the particle at this time.

(a) y

O 1

1

x

2

(
1: graph

1: direction

(b) x0(t) = t� 1

1 + t
= 0

t2 + t� 1 = 0

t =
�1 +

p
5

2
or t = 0:618 in [0; �]

x(0:618) = �0:290 y(0:618) = 1:738

3

8>><
>>:

1: x0(t) = 0

1: solution for t

1: position

(c) x(t) =
t2

2
� ln(1 + t) = 0

t = 1:285 or 1:286

x0(t) = t� 1

1 + t
y0(t) = 3 cos t

speed =
p
(x0(1:286))2 + (y0(1:286))2 = 1:196

x
00(t) = 1 +

1

(1 + t)2
y

00(t) = �3 sin t

acceleration vector = <x00(1:286); y00(1:286)>

= <1:191;�2:879>

4

8>>>>><
>>>>>:

1: x(t) = 0

1: solution for t

1: speed

1: acceleration vector
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2. The shaded region, R, is bounded by the graph of y = x2 and the line
y = 4, as shown in the �gure above.

(a) Find the area of R.

(b) Find the volume of the solid generated by revolving R about the
x{axis.

(c) There exists a number k, k > 4, such that when R is revolved about
the line y = k, the resulting solid has the same volume as the solid in
part (b). Write, but do not solve, an equation involving an integral
expression that can be used to �nd the value of k.

O
x

y

y  4

y  x 2

(a) Area =

Z
2

�2

(4� x2) dx

= 2

Z
2

0

(4� x2) dx

= 2

�
4x�

x3

3

�2
0

=
32

3
= 10:666 or 10:667

2

(
1: integral

1: answer

(b) Volume = �

Z
2

�2

�
42 � (x2)2

�
dx

= 2�

Z
2

0

(16� x4) dx

= 2�

�
16x�

x5

5

�2
0

=
256�

5
= 160:849 or 160:850

3

8>><
>>:

1: limits and constant

1: integrand

1: answer

(c) �

Z
2

�2

�
(k � x2)2 � (k � 4)2

�
dx =

256�

5

4

8>>>><
>>>>:

1: limits and constant

2: integrand
<�1> each error

1: equation
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3. The rate at which water ows out of a pipe, in gallons per hour, is
given by a di�erentiable function R of time t. The table above
shows the rate as measured every 3 hours for a 24{hour period.

(a) Use a midpoint Riemann sum with 4 subdivisions of equal

length to approximate

Z
24

0

R(t) dt. Using correct units, explain

the meaning of your answer in terms of water ow.

(b) Is there some time t, 0 < t < 24, such that R0(t) = 0? Justify
your answer.

(c) The rate of water ow R(t) can be approximated by

Q(t) =
1

79

�
768 + 23t� t2

�
. Use Q(t) to approximate the

average rate of water ow during the 24{hour time period.
Indicate units of measure.

t R(t)

(hours) (gallons per hour)

0 9.6

3 10.4

6 10.8

9 11.2

12 11.4

15 11.3

18 10.7

21 10.2

24 9.6

(a)

Z 24

0

R(t) dt � 6[R(3) +R(9) +R(15) +R(21)]

= 6[10:4+ 11:2 + 11:3 + 10:2]

= 258.6 gallons

This is an approximation to the total ow in
gallons of water from the pipe in the 24{hour
period.

3

8>><
>>:

1: R(3) +R(9) +R(15) +R(21)

1: answer

1: explanation

(b) Yes;

Since R(0) = R(24) = 9:6, the Mean Value
Theorem guarantees that there is a t, 0 < t < 24,
such that R0(t) = 0.

2

(
1: answer

1: MVT or equivalent

(c) Average rate of ow

� average value of Q(t)

=
1

24

Z
24

0

1

79
(768 + 23t� t2) dt

= 10:785 gal/hr or 10.784 gal/hr

3

8>><
>>:

1: limits and average value constant

1: Q(t) as integrand

1: answer

(units) Gallons in part (a) and gallons/hr in
part (c), or equivalent.

1: units
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4. The function f has derivatives of all orders for all real numbers x. Assume f(2) = �3, f 0(2) = 5,
f 00(2) = 3, and f 000(2) = �8.

(a) Write the third{degree Taylor polynomial for f about x = 2 and use it to approximate f(1:5).

(b) The fourth derivative of f satis�es the inequality jf (4)(x)j � 3 for all x in the closed interval [1:5; 2].
Use the Lagrange error bound on the approximation to f(1:5) found in part (a) to explain why
f(1:5) 6= �5.

(c) Write the fourth{degree Taylor polynomial, P (x), for g(x) = f(x2 + 2) about x = 0. Use P to
explain why g must have a relative minimum at x = 0.

(a) T3(f; 2)(x) = �3 + 5(x� 2) +
3

2
(x� 2)2 �

8

6
(x � 2)3

f(1:5) � T3(f; 2)(1:5)

= �3 + 5(�0:5) +
3

2
(�0:5)2 �

4

3
(�0:5)3

= �4:9583 = �4:958

4

8><
>:

3: T3(f; 2)(x)
<�1> each error

1: approximation of f(1:5)

(b) Lagrange Error Bound =
3

4!
j1:5� 2j4 = 0:0078125

f(1:5) > �4:9583� 0:0078125 = �4:966 > �5

Therefore, f(1:5) 6= �5.

2

(
1: value of Lagrange Error Bound

1: explanation

(c) P (x) = T4(g; 0)(x)

= T2(f; 2)(x
2 + 2) = �3 + 5x2 +

3

2
x4

The coe�cient of x in P (x) is g0(0). This coe�cient
is 0, so g0(0) = 0.

The coe�cient of x2 in P (x) is
g00(0)

2!
. This coe�cient

is 5, so g00(0) = 10 which is greater than 0.

Therefore, g has a relative minimum at x = 0.

3

8>>><
>>>:

2: T4(g; 0)(x)
<�1> each incorrect, missing,

or extra term

1: explanation

Note:
<�1> max for improper use of + : : : or
equality
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5. The graph of the function f , consisting of three line segments, is

given above. Let g(x) =

Z
x

1

f(t) dt.

(a) Compute g(4) and g(�2).

(b) Find the instantaneous rate of change of g, with respect to x, at
x = 1.

(c) Find the absolute minimum value of g on the closed interval
[�2; 4]. Justify your answer.

(d) The second derivative of g is not de�ned at x = 1 and x = 2.
How many of these values are x{coordinates of points of
inection of the graph of g? Justify your answer.

O

(1, 4)

(2, 1)

(4, –1)

1–1 2–2 3 4

1

–1

2

–2

3

4

(a) g(4) =

Z
4

1

f(t) dt =
3

2
+ 1 +

1

2
�

1

2
=

5

2

g(�2) =

Z
�2

1

f(t) dt = �
1

2
(12) = �6

2

(
1: g(4)

1: g(�2)

(b) g0(1) = f(1) = 4 1: answer

(c) g is increasing on [�2; 3] and decreasing on [3; 4].

Therefore, g has absolute minimum at an
endpoint of [�2; 4].

Since g(�2) = �6 and g(4) =
5

2
,

the absolute minimum value is �6.

3

8>><
>>:

1: interior analysis

1: endpoint analysis

1: answer

(d) One; x = 1

On (�2; 1), g00(x) = f 0(x) > 0

On (1; 2), g00(x) = f 0(x) < 0

On (2; 4), g00(x) = f 0(x) < 0

Therefore (1; g(1)) is a point of inection and
(2; g(2)) is not.

3

8>><
>>:

1: choice of x = 1 only

1: show (1; g(1)) is a point of inection

1: show (2; g(2)) is not a point of inection
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6. Let f be the function whose graph goes through the point (3; 6) and whose derivative is given by

f 0(x) =
1 + ex

x2
.

(a) Write an equation of the line tangent to the graph of f at x = 3 and use it to approximate f(3:1).

(b) Use Euler's method, starting at x = 3 with a step size of 0.05, to approximate f(3:1). Use f 00 to
explain why this approximation is less than f(3:1).

(c) Use

Z
3:1

3

f 0(x) dx to evaluate f(3:1).

(a) f 0(3) =
1 + e3

9
= 2:342 or 2:343

y � 6 =
1 + e3

9
(x� 3)

y = 6 +
1 + e3

9
(x� 3)

f(3:1) � 6 +
1 + e3

9
(0:1) = 6:234

3

8>><
>>:

1: f 0(3)

1: equation

1: approximation of f(3:1)

(b) f(3:05) � f(3) + f 0(3)(0:05)

= 6 + 0:11714 = 6:11714

f(3:1) � 6:11714+ f 0(3:05)(0:05)

= 6:11714+ (2:37735)(0:05) = 6:236

f 00(x) =
x2ex � 2x(1 + ex)

x4
=

(x� 2)ex � 2

x3

For x � 3, f 00(x) >
ex � 2

x3
> 0 and the graph

of f is concave upward on (3; 3:1). Therefore,
the Euler approximation lines at 3 and 3.05 lie
below the graph.

4

8>>>>>>>>><
>>>>>>>>>:

1: Euler's method equations or
equivalent table

1: Euler approximation to f(3:1)
(not eligible without �rst point)

1: f 00(x)

1: reason

(c) f(3:1)� f(3) =

Z
3:1

3

1 + ex

x2
dx

f(3:1) = 6 + 0:2378 = 6:237 or 6:238

2

8><
>:

1:

Z 3:1

3

1 + ex

x2
dx = f(3:1)� f(3)

1: answer


