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1. A particle moves along the y{axis with velocity given by v(t) = t sin(t2) for t � 0.

(a) In which direction (up or down) is the particle moving at time t = 1:5? Why?

(b) Find the acceleration of the particle at time t = 1:5. Is the velocity of the particle increasing at
t = 1:5? Why or why not?

(c) Given that y(t) is the position of the particle at time t and that y(0) = 3, �nd y(2).

(d) Find the total distance traveled by the particle from t = 0 to t = 2.

(a) v(1:5) = 1:5 sin(1:52) = 1:167

Up, because v(1:5) > 0

1: answer and reason

(b) a(t) = v0(t) = sin t2 + 2t2 cos t2

a(1:5) = v0(1:5) = �2:048 or �2:049
No; v is decreasing at 1.5 because v0(1:5) < 0

2

(
1: a(1:5)

1: conclusion and reason

(c) y(t) =

Z
v(t) dt

=

Z
t sin t2 dt = �cos t2

2
+ C

y(0) = 3 = �1

2
+ C =) C =

7

2

y(t) = �1

2
cos t2 +

7

2

y(2) = �1

2
cos 4 +

7

2
= 3:826 or 3:827

3

8>>>>><
>>>>>:

1: y(t) =

Z
v(t) dt

1: y(t) = �1

2
cos t2 + C

1: y(2)

(d) distance =

Z
2

0

jv(t)j dt = 1:173

or

v(t) = t sin t2 = 0

t = 0 or t =
p
� � 1:772

y(0) = 3 ; y(
p
�) = 4 ; y(2) = 3:826 or 3:827

[y(
p
�)� y(0)] + [y(

p
�)� y(2)]

= 1:173 or 1:174

3

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1: limits of 0 and 2 on an integral of
v(t) or jv(t)j
or

uses y(0) and y(2) to compute distance

1: handles change of direction at student's
turning point

1: answer
0/1 if incorrect turning point
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2. The shaded region, R, is bounded by the graph of y = x2 and the line
y = 4, as shown in the �gure above.

(a) Find the area of R.

(b) Find the volume of the solid generated by revolving R about the
x{axis.

(c) There exists a number k, k > 4, such that when R is revolved about
the line y = k, the resulting solid has the same volume as the solid in
part (b). Write, but do not solve, an equation involving an integral
expression that can be used to �nd the value of k.

O
x

y

y  4

y  x 2

(a) Area =

Z
2

�2

(4� x2) dx

= 2

Z
2

0

(4� x2) dx

= 2

�
4x�

x3

3

�2
0

=
32

3
= 10:666 or 10:667

2

(
1: integral

1: answer

(b) Volume = �

Z
2

�2

�
42 � (x2)2

�
dx

= 2�

Z
2

0

(16� x4) dx

= 2�

�
16x�

x5

5

�2
0

=
256�

5
= 160:849 or 160:850

3

8>><
>>:

1: limits and constant

1: integrand

1: answer

(c) �

Z
2

�2

�
(k � x2)2 � (k � 4)2

�
dx =

256�

5

4

8>>>><
>>>>:

1: limits and constant

2: integrand
<�1> each error

1: equation
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3. The rate at which water ows out of a pipe, in gallons per hour, is
given by a di�erentiable function R of time t. The table above
shows the rate as measured every 3 hours for a 24{hour period.

(a) Use a midpoint Riemann sum with 4 subdivisions of equal

length to approximate

Z
24

0

R(t) dt. Using correct units, explain

the meaning of your answer in terms of water ow.

(b) Is there some time t, 0 < t < 24, such that R0(t) = 0? Justify
your answer.

(c) The rate of water ow R(t) can be approximated by

Q(t) =
1

79

�
768 + 23t� t2

�
. Use Q(t) to approximate the

average rate of water ow during the 24{hour time period.
Indicate units of measure.

t R(t)

(hours) (gallons per hour)

0 9.6

3 10.4

6 10.8

9 11.2

12 11.4

15 11.3

18 10.7

21 10.2

24 9.6

(a)

Z 24

0

R(t) dt � 6[R(3) +R(9) +R(15) +R(21)]

= 6[10:4+ 11:2 + 11:3 + 10:2]

= 258.6 gallons

This is an approximation to the total ow in
gallons of water from the pipe in the 24{hour
period.

3

8>><
>>:

1: R(3) +R(9) +R(15) +R(21)

1: answer

1: explanation

(b) Yes;

Since R(0) = R(24) = 9:6, the Mean Value
Theorem guarantees that there is a t, 0 < t < 24,
such that R0(t) = 0.

2

(
1: answer

1: MVT or equivalent

(c) Average rate of ow

� average value of Q(t)

=
1

24

Z
24

0

1

79
(768 + 23t� t2) dt

= 10:785 gal/hr or 10.784 gal/hr

3

8>><
>>:

1: limits and average value constant

1: Q(t) as integrand

1: answer

(units) Gallons in part (a) and gallons/hr in
part (c), or equivalent.

1: units
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4. Suppose that the function f has a continuous second derivative for all x, and that f(0) = 2, f 0(0) = �3,
and f 00(0) = 0. Let g be a function whose derivative is given by g0(x) = e�2x(3f(x) + 2f 0(x)) for all x.

(a) Write an equation of the line tangent to the graph of f at the point where x = 0.

(b) Is there su�cient information to determine whether or not the graph of f has a point of inection
when x = 0? Explain your answer.

(c) Given that g(0) = 4, write an equation of the line tangent to the graph of g at the point where
x = 0.

(d) Show that g00(x) = e�2x(�6f(x)� f 0(x) + 2f 00(x)). Does g have a local maximum at x = 0? Justify
your answer.

(a) Slope at x = 0 is f 0(0) = �3

At x = 0, y = 2

y � 2 = �3(x� 0)

1: equation

(b) No. Whether f 00(x) changes sign at x = 0 is
unknown. The only given value of f 00(x) is
f 00(0) = 0.

2

(
1: answer

1: explanation

(c) g0(x) = e�2x(3f(x) + 2f 0(x))

g0(0) = e0(3f(0) + 2f 0(0))

= 3(2) + 2(�3) = 0

y � 4 = 0(x� 0)

y = 4

2

(
1: g0(0)

1: equation

(d) g0(x) = e�2x(3f(x) + 2f 0(x))

g00(x) = (�2e�2x)(3f(x) + 2f 0(x))

+ e�2x(3f 0(x) + 2f 00(x))

= e�2x(�6f(x)� f 0(x) + 2f 00(x))

g00(0) = e0[(�6)(2)� (�3) + 2(0)] = �9

Since g0(0) = 0 and g00(0) < 0, g does have a
local maximum at x = 0.

4

8>>>>>><
>>>>>>:

2: verify derivative
0/2 product or chain rule error
<�1> algebra errors

1: g0(0) = 0 and g00(0)

1: answer and reasoning
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5. The graph of the function f , consisting of three line segments, is

given above. Let g(x) =

Z
x

1

f(t) dt.

(a) Compute g(4) and g(�2).

(b) Find the instantaneous rate of change of g, with respect to x, at
x = 1.

(c) Find the absolute minimum value of g on the closed interval
[�2; 4]. Justify your answer.

(d) The second derivative of g is not de�ned at x = 1 and x = 2.
How many of these values are x{coordinates of points of
inection of the graph of g? Justify your answer.

O

(1, 4)

(2, 1)

(4, –1)

1–1 2–2 3 4

1

–1

2

–2

3

4

(a) g(4) =

Z
4

1

f(t) dt =
3

2
+ 1 +

1

2
�

1

2
=

5

2

g(�2) =

Z
�2

1

f(t) dt = �
1

2
(12) = �6

2

(
1: g(4)

1: g(�2)

(b) g0(1) = f(1) = 4 1: answer

(c) g is increasing on [�2; 3] and decreasing on [3; 4].

Therefore, g has absolute minimum at an
endpoint of [�2; 4].

Since g(�2) = �6 and g(4) =
5

2
,

the absolute minimum value is �6.

3

8>><
>>:

1: interior analysis

1: endpoint analysis

1: answer

(d) One; x = 1

On (�2; 1), g00(x) = f 0(x) > 0

On (1; 2), g00(x) = f 0(x) < 0

On (2; 4), g00(x) = f 0(x) < 0

Therefore (1; g(1)) is a point of inection and
(2; g(2)) is not.

3

8>><
>>:

1: choice of x = 1 only

1: show (1; g(1)) is a point of inection

1: show (2; g(2)) is not a point of inection
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6. In the �gure above, line ` is tangent to the graph of y =
1

x2

at point P , with coordinates

�
w;

1

w2

�
, where w > 0. Point

Q has coordinates (w; 0). Line ` crosses the x{axis at the
point R, with coordinates (k; 0).

(a) Find the value of k when w = 3.

(b) For all w > 0, �nd k in terms of w.

x

y

RQ 

1
x2y =

P 

O

(c) Suppose that w is increasing at the constant rate of 7 units per second. When w = 5, what is the
rate of change of k with respect to time?

(d) Suppose that w is increasing at the constant rate of 7 units per second. When w = 5, what is the
rate of change of the area of 4PQR with respect to time? Determine whether the area is increasing
or decreasing at this instant.

(a)
dy

dx
= �

2

x3
;

dy

dx

����
x=3

= �
2

27

Line ` through

�
3;

1

9

�
and (k; 0) has slope �

2

27
.

Therefore,
0�

1

9
k � 3

= �
2

27
or 0�

1

9
= �

2

27
(k � 3)

k =
9

2

2

8><
>:

1:
dy

dx

����
x=3

1: answer

(b) Line ` through

�
w;

1

w2

�
and (k; 0) has slope �

2

w3
.

Therefore,
0�

1

w2

k � w
= �

2

w3
or 0�

1

w2
= �

2

w3
(k � w)

k =
3

2
w

2

8><
>:

1: equation relating w and k,
using slopes

1: answer

(c)
dk

dt
=

3

2

dw

dt
=

3

2
� 7 =

21

2
;

dk

dt

����
w=5

=
21

2
1: answer using

dw

dt
= 7

(d)

� �

�

..................................................................................................................................................................................................................
............................

.............................
.............................

.............................
............................

.............................
............................................................................................

Q(w; 0)
R(k; 0)

P
�
w; 1=w2

�

A =
1

2
(k � w)

1

w2
=

1

2

�
3

2
w � w

�
1

w2
=

1

4w

dA

dt
= �

1

4w2

dw

dt

dA

dt

����
w=5

= �
1

100
� 7 = �0:07

Therefore, area is decreasing.

4

8>>>>>>>>>>><
>>>>>>>>>>>:

1: area in terms of w and/or k

1:
dA

dt
implicitly

1:
dA

dt

����
w=5

using
dw

dt
= 7

1: conclusion

Note: 0/4 if A constant


