AP Calculus AB 2001 Scoring Guidelines

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

AP ${ }^{\circledR}$ CALCULUS AB
 2001 SCORING GUIDELINES

Question 1

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$. The region S is bounded by the y-axis and the graphs of $y=2-x^{3}$ and $y=\tan x$.
(a) Find the area of R.
(b) Find the area of S.
(c) Find the volume of the solid generated when S is revolved
 about the x-axis.

Point of intersection

$2-x^{3}=\tan x$ at $(A, B)=(0.902155,1.265751)$
(a) Area $R=\int_{0}^{A} \tan x d x+\int_{A}^{\sqrt[3]{2}}\left(2-x^{3}\right) d x=0.729$
or
Area $R=\int_{0}^{B}\left((2-y)^{1 / 3}-\tan ^{-1} y\right) d y=0.729$
or
Area $R=\int_{0}^{\sqrt[3]{2}}\left(2-x^{3}\right) d x-\int_{0}^{A}\left(2-x^{3}-\tan x\right) d x=0.729$
(b) Area $S=\int_{0}^{A}\left(2-x^{3}-\tan x\right) d x=1.160$ or 1.161
or
Area $S=\int_{0}^{B} \tan ^{-1} y d y+\int_{B}^{2}(2-y)^{1 / 3} d y=1.160$ or 1.161 or
Area S

$$
\begin{aligned}
& =\int_{0}^{2}(2-y)^{1 / 3} d y-\int_{0}^{B}\left((2-y)^{1 / 3}-\tan ^{-1} y\right) d y \\
& =1.160 \text { or } 1.161
\end{aligned}
$$

(c) Volume $=\pi \int_{0}^{A}\left(\left(2-x^{3}\right)^{2}-\tan ^{2} x\right) d x$

$$
=2.652 \pi \text { or } 8.331 \text { or } 8.332
$$

$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { limits and constant } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB
 2001 SCORING GUIDELINES

Question 2

The temperature, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15 -day period.
(a) Use data from the table to find an approximation for $W^{\prime}(12)$. Show the computations that lead to your answer. Indicate units of measure.
(b) Approximate the average temperature, in degrees Celsius, of the water

t (days)	$W(t)$ $\left({ }^{\circ} \mathrm{C}\right)$
0	20
3	31
6	28
9	24
12	22
15	21

(c) A student proposes the function P, given by $P(t)=20+10 t e^{(-t / 3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and $P(t)$ is measured in degrees Celsius. Find $P^{\prime}(12)$. Using appropriate units, explain the meaning of your answer in terms of water temperature.
(d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of $P(t)$ over the time interval $0 \leq t \leq 15$ days.
(a) Difference quotient; e.g.

$$
\begin{aligned}
& W^{\prime}(12) \approx \frac{W(15)-W(12)}{15-12}=-\frac{1}{3}{ }^{\circ} \mathrm{C} / \text { day or } \\
& W^{\prime}(12) \approx \frac{W(12)-W(9)}{12-9}=-\frac{2}{3}{ }^{\circ} \mathrm{C} / \text { day or } \\
& W^{\prime}(12) \approx \frac{W(15)-W(9)}{15-9}=-\frac{1}{2}{ }^{\circ} \mathrm{C} / \text { day }
\end{aligned}
$$

(b) $\frac{3}{2}(20+2(31)+2(28)+2(24)+2(22)+21)=376.5$

Average temperature $\approx \frac{1}{15}(376.5)=25.1^{\circ} \mathrm{C}$
(c) $P^{\prime}(12)=10 e^{-t / 3}-\left.\frac{10}{3} t e^{-t / 3}\right|_{t=12}$

$$
=-30 e^{-4}=-0.549^{\circ} \mathrm{C} / \text { day }
$$

This means that the temperature is decreasing at the rate of $0.549^{\circ} \mathrm{C} /$ day when $t=12$ days.
(d) $\frac{1}{15} \int_{0}^{15}\left(20+10 t e^{-t / 3}\right) d t=25.757^{\circ} \mathrm{C}$
$2:\left\{\begin{array}{l}1: \text { difference quotient } \\ 1: \text { answer (with units) }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { trapezoidal method } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: P^{\prime}(12) \text { (with or without units) } \\ 1: \text { interpretation }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { limits and } \\ \quad \text { average value constant } \\ 1: \text { answer }\end{array}\right.$

AP® ${ }^{\circledR}$ CALCULUS AB
 2001 SCORING GUIDELINES

Question 3

A car is traveling on a straight road with velocity $55 \mathrm{ft} / \mathrm{sec}$ at time $t=0$. For $0 \leq t \leq 18$ seconds, the car's acceleration $a(t)$, in $\mathrm{ft} / \mathrm{sec}^{2}$, is the piecewise linear function defined by the graph above.
(a) Is the velocity of the car increasing at $t=2$ seconds? Why or why not?

(b) At what time in the interval $0 \leq t \leq 18$, other than $t=0$, is the velocity of the car $55 \mathrm{ft} / \mathrm{sec}$? Why?
(c) On the time interval $0 \leq t \leq 18$, what is the car's absolute maximum velocity, in $\mathrm{ft} / \mathrm{sec}$, and at what time does it occur? Justify your answer.
(d) At what times in the interval $0 \leq t \leq 18$, if any, is the car's velocity equal to zero? Justify your answer.
(a) Since $v^{\prime}(2)=a(2)$ and $a(2)=15>0$, the velocity is increasing at $t=2$.
(b) At time $t=12$ because
$v(12)-v(0)=\int_{0}^{12} a(t) d t=0$.
(c) The absolute maximum velocity is $115 \mathrm{ft} / \mathrm{sec}$ at $t=6$.

The absolute maximum must occur at $t=6$ or at an endpoint.

$$
\begin{aligned}
& v(6)=55+\int_{0}^{6} a(t) d t \\
&=55+2(15)+\frac{1}{2}(4)(15)=115>v(0) \\
& \int_{6}^{18} a(t) d t<0 \text { so } v(18)<v(6)
\end{aligned}
$$

(d) The car's velocity is never equal to 0 . The absolute minimum occurs at $t=16$ where
$v(16)=115+\int_{6}^{16} a(t) d t=115-105=10>0$.

1: answer and reason
$2:\left\{\begin{array}{l}1: t=12 \\ 1: \text { reason }\end{array}\right.$

4 :
$1: t=6$
1: absolute maximum velocity
1 : identifies $t=6$ and
$t=18$ as candidates
or
indicates that v increases,
decreases, then increases
1 : eliminates $t=18$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB
 2001 SCORING GUIDELINES

Question 4

Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?
(a) $h^{\prime}(x)=0$ at $x= \pm \sqrt{2}$

Local minima at $x=-\sqrt{2}$ and at $x=\sqrt{2}$
(b) $h^{\prime \prime}(x)=1+\frac{2}{x^{2}}>0$ for all $x \neq 0$. Therefore, the graph of h is concave up for all $x \neq 0$.
(c) $\quad h^{\prime}(4)=\frac{16-2}{4}=\frac{7}{2}$

$$
y+3=\frac{7}{2}(x-4)
$$

(d) The tangent line is below the graph because the graph of h is concave up for $x>4$.
$4:\left\{\begin{array}{l}1: x= \pm \sqrt{2} \\ 1: \text { analysis } \\ 2: \text { conclusions }\end{array}\right.$ $<-1>$ not dealing with \quad discontinuity at 0
$3:\left\{\begin{array}{l}1: h^{\prime \prime}(x) \\ 1: h^{\prime \prime}(x)>0 \\ 1: \text { answer }\end{array}\right.$

1 : tangent line equation

1 : answer with reason

AP ${ }^{\circledR}$ CALCULUS AB 2001 SCORING GUIDELINES

Question 5

A cubic polynomial function f is defined by

$$
f(x)=4 x^{3}+a x^{2}+b x+k
$$

where a, b, and k are constants. The function f has a local minimum at $x=-1$, and the graph of f has a point of inflection at $x=-2$.
(a) Find the values of a and b.
(b) If $\int_{0}^{1} f(x) d x=32$, what is the value of k ?
(a) $f^{\prime}(x)=12 x^{2}+2 a x+b$
$f^{\prime \prime}(x)=24 x+2 a$
$f^{\prime}(-1)=12-2 a+b=0$
$f^{\prime \prime}(-2)=-48+2 a=0$
$a=24$
$b=-12+2 a=36$
(b) $\int_{0}^{1}\left(4 x^{3}+24 x^{2}+36 x+k\right) d x$
$=x^{4}+8 x^{3}+18 x^{2}+\left.k x\right|_{x=0} ^{x=1}=27+k$
$27+k=32$
$k=5$

$$
5:\left\{\begin{array}{l}
1: f^{\prime}(-1)=0 \\
1: f^{\prime \prime}(-2)=0 \\
1: a, b
\end{array}\right.
$$

2: antidifferentiation
$<-1>$ each error
4 :
1: expression in k
$1: k$

AP ${ }^{\circledR}$ CALCULUS AB 2001 SCORING GUIDELINES

Question 6

The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of $y=f(x)$, and the slope at each point (x, y) on the graph is given by $\frac{d y}{d x}=y^{2}(6-2 x)$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
(b) Find $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=y^{2}(6-2 x)$ with the initial condition $f(3)=\frac{1}{4}$.
(a) $\frac{d^{2} y}{d x^{2}}=2 y \frac{d y}{d x}(6-2 x)-2 y^{2}$

$$
=2 y^{3}(6-2 x)^{2}-2 y^{2}
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{\left(3, \frac{1}{4}\right)}=0-2\left(\frac{1}{4}\right)^{2}=-\frac{1}{8}
$$

(b) $\frac{1}{y^{2}} d y=(6-2 x) d x$

$$
\begin{aligned}
& -\frac{1}{y}=6 x-x^{2}+C \\
& -4=18-9+C=9+C \\
& C=-13
\end{aligned}
$$

$$
y=\frac{1}{x^{2}-6 x+13}
$$

$2: \frac{d^{2} y}{d x^{2}}$
$<-2>$ product rule or chain rule error

1 : value at $\left(3, \frac{1}{4}\right)$

1: separates variables
1: antiderivative of $d y$ term
1: antiderivative of $d x$ term
6 :
1 : constant of integration
1 : uses initial condition $f(3)=\frac{1}{4}$
1: solves for y

Note: max 3/6 [1-1-1-0-0-0] if no constant of integration

Note: $0 / 6$ if no separation of variables

