The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
2. A department supervisor is considering purchasing one of two comparable photocopy machines, A or B. Machine A costs $10,000 and machine B costs $10,500. This department replaces photocopy machines every three years. The repair contract for machine A costs $50 per month and covers an unlimited number of repairs. The repair contract for machine B costs $200 per repair. Based on past performance, the distribution of the number of repairs needed over any one-year period for machine B is shown below.

<table>
<thead>
<tr>
<th>Number of Repairs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.50</td>
<td>0.25</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>

You are asked to give a recommendation based on overall cost as to which machine, A or B, along with its repair contract, should be purchased. What would your recommendation be? Give a statistical justification to support your recommendation.

Machine A costs $10,000. Repair costs for three years (at $50/month) can be estimated at $50 \times 12 \times 3 = 1,800. Therefore Machine A total cost can be estimated at $10,000 + 1,800 = $11,800.

Machine B costs $10,500. The expected value for repairs/year can be found by:

\[E(\text{# of repairs} \times \text{cost of repair} \times \text{probability of #}) = \sum (0 \times 200 \times 0.5) \ldots (3 \times 200 \times 0.10) = 170/\text{year} \]

170 \times 3 \text{years} = $510 \text{expected repair costs for 3 years for Machine A total cost can be estimated at}

\[\frac{10,500 + 510}{11,010} \]

Conclusion: Machine B would be a better investment. As long as the number of repairs needed for Machine B follow the predicted pattern, the total sum of expected cost will be much less ($790 less) than expected cost of Machine A.
2. A department supervisor is considering purchasing one of two comparable photocopy machines, A or B. Machine A costs $10,000 and machine B costs $10,500. This department replaces photocopy machines every three years. The repair contract for machine A costs $50 per month and covers an unlimited number of repairs. The repair contract for machine B costs $200 per repair. Based on past performance, the distribution of the number of repairs needed over any one-year period for machine B is shown below.

<table>
<thead>
<tr>
<th>Number of Repairs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.50</td>
<td>0.25</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>

You are asked to give a recommendation based on overall cost as to which machine, A or B, along with its repair contract, should be purchased. What would your recommendation be? Give a statistical justification to support your recommendation.

Over a 3-yr. period machine A w/ the repair contract costs $10,000 + ($50)(12)(3) = $11,800

The probability of machine B costing more than machine A = $11,800 - $10,500 = $1300 (number of repairs) = $1200 (number of repairs) = 0.5

The probability over a 3-yr. period of having 7 or more repairs = 0.01975

I would recommend to use machine B because the chance of spending more on machine B than machine A is very small.

\[P(27 \text{ repairs}) = 0.01975 \]
2. A department supervisor is considering purchasing one of two comparable photocopy machines, A or B. Machine A costs $10,000 and machine B costs $10,500. This department replaces photocopy machines every three years. The repair contract for machine A costs $50 per month and covers an unlimited number of repairs. The repair contract for machine B costs $200 per repair. Based on past performance, the distribution of the number of repairs needed over any one-year period for machine B is shown below.

<table>
<thead>
<tr>
<th>Number of Repairs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.50</td>
<td>0.25</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>

$200/each

You are asked to give a recommendation based on overall cost as to which machine, A or B, along with its repair contract, should be purchased. What would your recommendation be? Give a statistical justification to support your recommendation.

\[
\text{expected # of repairs (B) } = 0(0.5) + 1(0.25) + 2(0.15) + 3(0.1) = 0.85
\]

\[
\text{expected $/yr } = 0.85 (200) = \$170/yr
\]

\[
\text{expected $ of B } = $10,500 + $170 = $10,670
\]

\[
\text{expected $ of A w/ repair } = $10,000 + $50(12) = $10,600
\]

I would recommend buying Machine A, along with its repair contract. It only costs $10,600 and you are equipped with unlimited repairs. Whereas, Machine B costs $10,500 but one repair will cost you $200 (bringing total to $10,700). Machine B is expected to have almost one repair a year. Therefore the expected price will be $10,670 which is higher than the fully equipped Machine A priced at a low $10,600/yr.