The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
Mech 2. A spherical, nonrotating planet has a radius $R$ and a uniform density $\rho$ throughout its volume. Suppose a narrow tunnel were drilled through the planet along one of its diameters, as shown in the figure above, in which a small ball of mass $m$ could move freely under the influence of gravity. Let $r$ be the distance of the ball from the center of the planet.

(a) Show that the magnitude of the force on the ball at a distance $r < R$ from the center of the planet is given by $F = -C r$, where $C = \frac{4}{3} \pi G \rho m$.

\[ g = \frac{\delta G \cdot dA}{\delta dA} = 4 \pi G m_1 \] where $m_1$ is mass inside Gaussian surface.

\[ \rho = \frac{m_1}{V_1} \] $V_1$ of spherical gaussian surface is $\frac{4}{3} \pi r^3$.

\[ m_1 = \frac{4}{3} \pi r^3 \rho \]

\[ g = \frac{4 \pi G m_1}{\delta dA} \] and $m_1 = \frac{4}{3} \pi r^3 \rho$

\[ g = \frac{4 \pi G \left( \frac{4}{3} \pi r^3 \rho \right)}{4 \pi r^2} = \frac{4}{3} G \rho r \]

$F = mg = \frac{4}{3} G \rho m r \pi$

and since it is directed back toward the origin (center) $F$ is in direction opposite of $F$ and $r$. $F$ is negative:

(b) On the axes below, sketch the force $F$ on the ball as a function of distance $r$ from the center of the planet.
The ball is dropped into the tunnel from rest at point $P$ at the planet's surface.

(c) Determine the work done by gravity as the ball moves from the surface to the center of the planet.

$$ F = -\frac{4}{3} G \rho \pi R^2 $$

$$ U = -\int F \cdot dr = \int_{R}^{0} \frac{4}{3} G \rho \pi R^2 dr = \frac{4}{3} G \rho \pi R^2 \left[ \frac{R}{2} \right]_{R}^{0} \\
= 0 - \frac{2}{3} G \rho \pi R^2 $$

**Work done** = $-\Delta U = \left[ -\frac{2}{3} G \rho \pi R^2 \right]$ 

(d) Determine the speed of the ball when it reaches the center of the planet.

**The loss in potential energy** = **gain in kinetic energy**

$$ \frac{\Delta v^2}{2} = -\frac{2}{3} G \rho \pi R^2 $$

$$ v^2 = \frac{4}{3} G \rho \pi R^2 $$

$$ v = \sqrt{\frac{2R \sqrt{G \rho \pi}}{3}} $$

(e) Fully describe the subsequent motion of the ball from the time it reaches the center of the planet.

it will have a velocity still, so it won't stop instantly. It will continue through the planet until it reaches the other side. Then it will come back. There will be simple harmonic motion with amplitude = $R$

(f) Write an equation that could be used to calculate the time it takes the ball to move from point $P$ to the center of the planet. It is not necessary to solve this equation.

**F** = $-\frac{4}{3} G \rho \pi R^2 = ma = m\frac{dv}{dt}$ - no this won't work.

it would be $\frac{1}{4}$ the period time.

$F = ma = \frac{1}{4} \pi c^2 \rho \pi = \frac{1}{4} \frac{G \rho \pi}{c^2}$

then, $f = \sqrt{\frac{G \rho}{3 \pi c^2}}$

$$ T = \frac{1}{f} = \frac{4}{3 \pi} \sqrt{\frac{G \rho}{c^2}} $$

**time** = $\frac{T}{4} = \boxed{\frac{1}{4} \sqrt{\frac{3 \pi}{G \rho}}}$
Mech. 2. A spherical, nonrotating planet has a radius $R$ and a uniform density $\rho$ throughout its volume. Suppose a narrow tunnel were drilled through the planet along one of its diameters, as shown in the figure above, in which a small ball of mass $m$ could move freely under the influence of gravity. Let $r$ be the distance of the ball from the center of the planet.

(a) Show that the magnitude of the force on the ball at a distance $r < R$ from the center of the planet is given by $F = -Cr$, where $C = \frac{4}{3} \pi G \rho m$.

\[
F = \frac{G m \frac{4}{3} \pi \rho r^3}{r^2} = -\frac{G m \frac{4}{3} \pi \rho r}{r} \\
F = -Cr
\]

(b) On the axes below, sketch the force $F$ on the ball as a function of distance $r$ from the center of the planet.
The ball is dropped into the tunnel from rest at point \( P \) at the planet's surface.

(c) Determine the work done by gravity as the ball moves from the surface to the center of the planet.

\[
W = \int_{R}^{R} F \cdot ds = \int_{R}^{R} \frac{C \rho R^2}{z} \, \frac{dz}{R} = \frac{C R^2}{2} \left( -\frac{2 \pi G \rho m R^2}{3} \right)
\]

(d) Determine the speed of the ball when it reaches the center of the planet.

\[
F = ma \quad \Rightarrow \quad a = \frac{-\frac{G}{R^2} \rho m R^2}{m} = -G \rho R^2
\]

\[
v^2 = v_0^2 + 2a(x - x_0)
\]

\[
v^2 = G \frac{\rho m R^2}{R}
\]

\[
\sqrt{v^2} = \sqrt{G \frac{\rho m R^2}{R}} = v = \sqrt{2 g R}
\]

(e) Fully describe the subsequent motion of the ball from the time it reaches the center of the planet.

The ball will exhibit simple harmonic motion with an amplitude of \( R \).

(f) Write an equation that could be used to calculate the time it takes the ball to move from point \( P \) to the center of the planet. It is not necessary to solve this equation.

\[
\frac{d^2r}{dt^2} = \sqrt{2 g R} \quad \text{(from } d) \]

\[
\frac{dr}{dt} = \sqrt{2 g R}
\]
Mech 2. A spherical, nonrotating planet has a radius $R$ and a uniform density $\rho$ throughout its volume. Suppose a narrow tunnel were drilled through the planet along one of its diameters, as shown in the figure above, in which a small ball of mass $m$ could move freely under the influence of gravity. Let $r$ be the distance of the ball from the center of the planet.

(a) Show that the magnitude of the force on the ball at a distance $r < R$ from the center of the planet is given by $F = -Cr$, where $C = \frac{4}{3} \pi G \rho m$.

\[
F = -\frac{G m M_{\text{planet}}}{r^2} = -\frac{\frac{G m}{3} \pi \rho \left(\frac{4}{3} \pi r^3\right)}{r^2} = -\frac{4}{3} \pi G \rho m r = (\text{C})
\]

(b) On the axes below, sketch the force $F$ on the ball as a function of distance $r$ from the center of the planet.
The ball is dropped into the tunnel from rest at point $P$ at the planet's surface.

(c) Determine the work done by gravity as the ball moves from the surface to the center of the planet.

$$ W = \int F \, dr = \int_0^R -\frac{G \gamma}{r^2} \, dr = \left[ -\frac{G \gamma}{r} \right]_R^R + \frac{1}{2} \frac{C R^2}{R} $$

(d) Determine the speed of the ball when it reaches the center of the planet.

$$ V_1 = 0 \quad \Rightarrow \quad F = ma = -\frac{4}{3} \frac{\pi}{G \rho M} \gamma r $$

$$ a = -\frac{4}{3} \frac{\pi}{G \rho r} $$

$$ V_t^2 = V_1^2 + 2aX $$

$$ V_t = \sqrt{\frac{8\pi}{3} G \rho} $$

(e) Fully describe the subsequent motion of the ball from the time it reaches the center of the planet.

The ball continues through the center with the velocity it has gained from falling and moves away until the attractive force of gravity has caused it to slow down and fall "backwards" toward the center (this happens when the ball has reached the surface on the other side). The ball continues to oscillate between the antipodes in simple harmonic motion.

(f) Write an equation that could be used to calculate the time it takes the ball to move from point $P$ to the center of the planet. It is not necessary to solve this equation.

$$ a = -\frac{4}{3} \frac{\pi}{G \rho r} $$

$$ \frac{dv}{dt} = -\frac{4}{3} \frac{\pi}{G \rho r} t $$

$$ v = \frac{4}{3} \frac{\pi}{G \rho r} t $$

$$ \frac{dr}{dt} = -\frac{4}{3} \pi G \rho r t $$

$$ r = \frac{2}{3} \pi G \rho r t^2 + R = 0 $$

$$ R = \frac{2}{3} \pi G \rho r t^2 $$

$$ t = \left( \frac{3R}{2 \pi G \rho r} \right)^{1/2} $$