The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
E&M 3.

A circular wire loop with radius 0.10 m and resistance 50 Ω is suspended horizontally in a magnetic field of magnitude B directed upward at an angle of 60° with the vertical, as shown above. The magnitude of the field in teslas is given as a function of time t in seconds by the equation $B = 4(1 - 0.2t)$.

(a) Determine the magnetic flux Φ through the loop as a function of time.

$$\Phi = BA \cos(\theta)$$

$$A = \pi r^2$$

$$= 4(1 - 0.2t) \cos(60°) \pi (0.1)^2$$

$$\Phi = 0.0628(1 - 0.2t)$$

(b) Graph the magnetic flux Φ as a function of time on the axes below.

GO ON TO THE NEXT PAGE.
(c) Determine the magnitude of the induced emf in the loop.

\[E = -\frac{\Delta \phi}{\Delta t} = -0.0628 \left(1 - \cos \theta \right) \left(-0.01256 \right) \]

\[E = -\frac{0.0256}{0.01} = 0.01256 \text{ V} \]

(d)

i. Determine the magnitude of the induced current in the loop.

\[V = IR \]

\[\frac{V}{R} = I = \frac{0.01256}{50} = 2.512 \times 10^{-4} \text{ A} \]

ii. Show the direction of the induced current on the following diagram.

![Diagram showing the direction of induced current with a loop, field lines, and angles.]

(e) Determine the energy dissipated in the loop from \(t = 0 \) to \(t = 4 \text{ s} \).

\[P = IR \]

\[\int P \, dx = \text{Energy} \]

\[\int_0^4 I^2 R \, dx = \left(2.512 \times 10^{-4} \right)^2 \cdot (50) \int_0^4 \, dx = \left(3.015 \times 10^{-4} \right) \cdot 4 \]

\[\text{Energy dissipated} = 1.262 \times 10^{-5} \text{ J} \]

GO ON TO THE NEXT PAGE.
E&M 3.

A circular wire loop with radius 0.10 m and resistance 50 Ω is suspended horizontally in a magnetic field of magnitude B directed upward at an angle of 60° with the vertical, as shown above. The magnitude of the field in teslas is given as a function of time t in seconds by the equation $B = 4(1 - 0.2t)$.

(a) Determine the magnetic flux ϕ_m through the loop as a function of time.

$$\phi = \oint B \cdot \mathbf{dA} = \oint B \, dA \cos \theta = \frac{1}{2} B A = \frac{1}{2} B \cdot r^2$$

$$\phi = (4)(1 - 0.2t) \cdot 0.157$$

(b) Graph the magnetic flux ϕ_m as a function of time on the axes below.
(c) Determine the magnitude of the induced emf in the loop.

\[\mathcal{E} = \frac{d\phi}{dt} = d \left(0.028 \left(1 - 2t\right) \right) \]

\[= 0.028 \times 2 = 0.056 \, \text{V} \]

(d) i. Determine the magnitude of the induced current in the loop.

\[\frac{\mathbf{v}}{\mathbf{q}} = \frac{0.056}{50} = 2.5 \times 10^{-4} \]

ii. Show the direction of the induced current on the following diagram.

![Diagram showing the direction of induced current with a right-hand rule]

(e) Determine the energy dissipated in the loop from \(t = 0 \) to \(t = 4 \) s.

\[\rho = I \mathbf{v} \]

\[\rho \cdot t = \frac{\mathcal{E} - 0.85}{0.6} \times 4 = 1.26 \times 10^{-5} \]

GO ON TO THE NEXT PAGE.