\ 7 The *ADVANCED
éaCollege APPLACEMENT
Board PROGRAM®

AP Computer Science A
2000 Student Samples

The materialsincluded in thesefilesareintended for non-commercial use by AP
teachersfor course and exam preparation; permission for any other use must be sought
from the Advanced Placement Program. Teachers may reproduce them, in whole or in

part, in limited quantities, for face-to-face teaching purposes but may
not mass distributethe materials, electronically or otherwise. These materials and any
copies made of them may not beresold, and the copyright notices must beretained as
they appear here. Thispermission does not apply to any third-party copyrights
contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the
College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and
employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity.
Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board
serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance,

assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement
Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its
programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered
trademarks of the College Entrance Examination Board.

A3 A

(a) Write free function Occurrences, as started below. Occurrences retums the number of times that
word appears in WordCollection C. If word isnotin C, Occurrences should return 0.

In writing Occurrences, you may call any of the member functions of the WordCollection class.
Assume that the member functions work as specified.

Complete function Occurrences below.

int Occurrences(const WordCollection & C, const apstring & word)
// postecondition: returns the number of cccurrences of word in C

{ | ot KJ:
Vo1 wam =0
Tor(Kk=l; k &l.5ize(); k)
§ 14 (G Find kth(g) == ward)

Pm t+°
§

ks

Part (b) begins on page 12.

GO ON TO THE NEXT PAGE.

A3

A

(b} Write free function RemoveDuplicates, as started below. RemoveDuplicates removes all but

one occurrence of word from C. If word isnot in collection C, then RemoveDuplicates does
nothing.

In writing RemoveDuplicates, youmay call function Occurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.

void RemoveDuplicates (WordCollection & €, const apstring & word)
// posteondition: if word is present in C, all but cne occurrence
£ iz removed; otherwise, C is unchanged

{ while (0ccurrences(C,word) H)

1

}
¥

(_, Kewove (Hhk)j

GO ON TO THE NEXT PAGE.
-12-

A3 A

(¢} Write free function MostCommon, as started below. MostCommen returns the word that appears most

often in the collection. If there is more than one such word, return any one of them. You may assume that
C 18 not empty.

In writing MostCommon, you may call function Occurrences specified in part (a). Assume that
Occurrences works as specified, regardless of what you wrote in part (a).

Complete function MostCommon below.

apstring MostCommon {const WordCollection & C)
// precondition: C is not empty

/{ postcondition: returns the word that appears most often in C;

i if there is more than one such weord,
£ returns any one of those words
{ L] _1_ § — I ¥

1w»T l'(:ﬂ-

Gpstra ;wlrﬂj

ap S'h-f-'-! J“l(m;

while (§ <= LSizel))
word = {, iad Kta () -
£ (8 tuertnes (:‘_!u{mﬂ 7k)
{ Mlon = wﬂrd_;

} = Oceryranees (f-;'-'“ﬂ] '
}

4+

GO ON TO THE NEXT PAGE.
-13-

A B

{a) Write free function Occurrences, asstarted below, Cccurrences returns the number of times that
word appearsin WordCollection C. If word ismotin C, Occurrences should retarn 0.

In writing Occurrences, you may call any of the member functions of the WordCollection class.
Assume that the member functions work as specified.

Complete function Occurrences below.

int Occurrencesiconst WoerdCollection & O, const apstring & wnrd]f
// postcondition: returns the number of ceocurrences of word in C

'q,n'l' ‘qu-ll'iﬂ;
@l 0d 120, 1 4 Cosae0-1) 1)
L Radihey T = C Tk 4h L3
Gound 14
f:,*‘ur-"u I;.,.,J;

3

Part (b} begins on page 12.

GO ON TO THE NEXT PAGE.
-11-

A% R

(b) Write free function Removeluplicates, as started below. RemoveDuplicates removes all but

one occurrence of word from C. If word isnotin collection C, then RemoveDuplicates does
nothing.

In writing RemoveDuplicates, you may call function COccurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.
void RemoveDuplicates (WordCollection & C, const apstring & word)

/{ postconditicn: if word is present in C, all but cne occcurrence
¥ is removed; otherwisze, C is unchanged

‘Hﬁ Mn"'lfi'a rl'i = Qepw rienges ‘:_ E}unr&-“j"

Wle Caunderdy 7 NL
) Remave Ll)y
ﬁuh"h-'lu}r. ==

3 [fend Nhe
Sl e Cedon

GO ON TO THE NEXT PAGE.
«12-

A5 R

{¢) Write free function MostCommon, as started below. MostCommon returns the word that appears most
often in the collection. If there is more than one such word, return any one of them. You may assume that
15 not empty.

In writing MostCommon, you may call function Ceccurrences specified in part (a). Assume that
Cccurrences works as specified, regardless of what you wrote in part (a). |

Complete function MostCommen below.

apstring MostCommon (const WordCollection & C) {

// precondition: C is not empty

// postcondition: returns the word that appears most often in Cj
rr if there is more than one such word,

¥y returns any one of those words

Wt Mgk ~8) nyaVads
afitring deap e st Rerds; _
bt isor e Contany in)
bemiz . Fadh (),
N Vards I:jl':ll:i.n fienfes {If:_] J.'L-“‘.J}:;

H(AuwWorde s mus] o
ﬁnﬁ*‘: ﬁhn“:fﬂsi

ﬁﬂ-i!‘“#d}ﬂ"ﬂr; .;5.-' }I_‘r‘] {?;,‘ Mo s WP E i afe]
.-"r.fl:n-i 18

/e e

return Mod Haids y

3fx erd Lidinn

GO ON TO THE NEXT PAGE.

A C

{a}) Write free function Occurrences, asstarted below. Occurrences returns the number of times that
word appearsin WordCollectieon C. If word isnotin ©, Occurrences should retumn 0.

In wniting Occurrences, you may call any of the member functions of the WordCollection class,
Assume that the member functions work as specified.

Complete function Cccurrences below.

int Occurrences|const WordCollection & C, const apstring & word)
{/ postcondition: returns the number of occurrences of word in ©

E" inl I/ Cam.i'q; .
Gr (=0 ji<s55:2¢00j1%

<
1L (clil5= wou)
Counl +;

5

MHlam Cvwrd)
z

Part (b) begins on page 12.

GO ON TO THE NEXT PAGE.

A3 C

(b) Write free function RemoveDuplicates, as started below. RemcveDuplicates removes all but

one occurrence of word from C. If word isnotin collection C, then RemoveDuplicates does
nothing,.

In writing RemoveDuplicates, youmay call function Cccurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.

void RemoveDuplicates (WordCollection & C, const apstring & word)
// poestcondition: if word is present in C, all but one occurrence
£ is removed: ctherwise, C is unchanged

£
it 1= 0,
il (5_ Oc ¢ rren s> 1)

E ﬁvrff: 5-0c¢u.-7-£-55f? -1, ;0= ﬂji")
S. Hmove (wod

e

GO ON TO THE NEXT PAGE.

A3 C

(c) Write free function McstCommon, as started below. MostCommon refums the word that appears most
often in the collection. If there is more than one such word, return any one of them. You may assume that
C is not empty.

In writing MostCommon, you may call function Occurrences specified in part (a). Assume that
Cecurrences works as specified, regardless of what you wrote in part (a).

Complete function MostCommon below.

apstring MostCommon{const WordCollection & C}

// precondition: C is not enmpty

// posteconditiecn: returns the word that appears most often in C;

I if there is more than one such word,
£ returns any one of those words

Sk Cunt | himes demp)
af’%f I 'I:}:'?-ﬁ'h‘;

ﬁ”' f{:{mwf =0 roemh (= (5z iy if”:—#f i{"/}
3

b Or ¢ tppnes (€ dvmﬁ([w 7/
il o p > dimg

P IS =yl

HLJE""“? ;:J;w':’jfli;::bh/:

5

GO ON TO THE NEXT PAGE.
-13-

	2000 AP Computer Science A Student Samples
	Question 3
	Sample A - 9 Points
	Sample B - 6 Points
	Sample C - 3 Points

