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A3 A

(a) Write free function Occurrences, as started below. Occurrences retums the number of times that
word appears in WordCollection C. If word isnotin C, Occurrences should return 0.

In writing Occurrences, you may call any of the member functions of the WordCollection class.
Assume that the member functions work as specified.

Complete function Occurrences below.

int Occurrences(const WordCollection & C, const apstring & word)
// postecondition: returns the number of cccurrences of word in C
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Part (b) begins on page 12.
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(b} Write free function RemoveDuplicates, as started below. RemoveDuplicates removes all but

one occurrence of word from C. If word isnot in collection C, then RemoveDuplicates does
nothing.

In writing RemoveDuplicates, youmay call function Occurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.

void RemoveDuplicates (WordCollection & €, const apstring & word)
// posteondition: if word is present in C, all but cne occurrence
£ iz removed; otherwise, C is unchanged

{ while (0ccurrences(C,word) H)
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A3 A

(¢} Write free function MostCommon, as started below. MostCommen returns the word that appears most

often in the collection. If there is more than one such word, return any one of them. You may assume that
C 18 not empty.

In writing MostCommon, you may call function Occurrences specified in part (a). Assume that
Occurrences works as specified, regardless of what you wrote in part (a).

Complete function MostCommon below.

apstring MostCommon {const WordCollection & C)
// precondition: C is not empty

/{ postcondition: returns the word that appears most often in C;

i if there is more than one such weord,
£ returns any one of those words
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A B

{a) Write free function Occurrences, asstarted below, Cccurrences returns the number of times that
word appearsin WordCollection C. If word ismotin C, Occurrences should retarn 0.

In writing Occurrences, you may call any of the member functions of the WordCollection class.
Assume that the member functions work as specified.

Complete function Occurrences below.

int Occurrencesiconst WoerdCollection & O, const apstring & wnrd]f
// postcondition: returns the number of ceocurrences of word in C
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(b) Write free function Removeluplicates, as started below. RemoveDuplicates removes all but

one occurrence of word from C. If word isnotin collection C, then RemoveDuplicates does
nothing.

In writing RemoveDuplicates, you may call function COccurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.
void RemoveDuplicates (WordCollection & C, const apstring & word)

/{ postconditicn: if word is present in C, all but cne occcurrence
¥ is removed; otherwisze, C is unchanged
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{¢) Write free function MostCommon, as started below. MostCommon returns the word that appears most
often in the collection. If there is more than one such word, return any one of them. You may assume that
15 not empty.

In writing MostCommon, you may call function Ceccurrences specified in part (a). Assume that
Cccurrences works as specified, regardless of what you wrote in part (a). |

Complete function MostCommen below.

apstring MostCommon (const WordCollection & C) {

// precondition: C is not empty

// postcondition: returns the word that appears most often in Cj
rr if there is more than one such word,

¥y returns any one of those words
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{a}) Write free function Occurrences, asstarted below. Occurrences returns the number of times that
word appearsin WordCollectieon C. If word isnotin ©, Occurrences should retumn 0.

In wniting Occurrences, you may call any of the member functions of the WordCollection class,
Assume that the member functions work as specified.

Complete function Cccurrences below.

int Occurrences|const WordCollection & C, const apstring & word)
{/ postcondition: returns the number of occurrences of word in ©
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(b) Write free function RemoveDuplicates, as started below. RemcveDuplicates removes all but

one occurrence of word from C. If word isnotin collection C, then RemoveDuplicates does
nothing,.

In writing RemoveDuplicates, youmay call function Cccurrences specified in part (a). Assume
that Occurrences works as specified, regardless of what you wrote in part (a).

Complete function RemoveDuplicates below.

void RemoveDuplicates (WordCollection & C, const apstring & word)
// poestcondition: if word is present in C, all but one occurrence
£ is removed: ctherwise, C is unchanged
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(c) Write free function McstCommon, as started below. MostCommon refums the word that appears most
often in the collection. If there is more than one such word, return any one of them. You may assume that
C is not empty.

In writing MostCommon, you may call function Occurrences specified in part (a). Assume that
Cecurrences works as specified, regardless of what you wrote in part (a).

Complete function MostCommon below.

apstring MostCommon{const WordCollection & C}

// precondition: C is not enmpty

// posteconditiecn: returns the word that appears most often in C;

I if there is more than one such word,
£ returns any one of those words
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