The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
8. Carbon (graphite), carbon dioxide, and carbon monoxide form an equilibrium mixture, as represented by the equation above.

\[C(s) + CO_2(g) \rightleftharpoons 2 \text{CO}(g) \]

(a) Predict the sign for the change in entropy, \(\Delta S \), for the reaction. Justify your prediction.

(b) In the table below are data that show the percent of CO in the equilibrium mixture at two different temperatures. Predict the sign for the change in enthalpy, \(\Delta H \), for the reaction. Justify your prediction.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>% CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C</td>
<td>60</td>
</tr>
<tr>
<td>850°C</td>
<td>94</td>
</tr>
</tbody>
</table>

(c) Appropriately complete the potential energy diagram for the reaction by finishing the curve on the graph below. Also, clearly indicate \(\Delta H \) for the reaction on the graph.

(d) If the initial amount of \(C(s) \) were doubled, what would be the effect on the percent of CO in the equilibrium mixture? Justify your answer.

\[\Delta S > 0 \] for this reaction because the reagents are going from one solid and one gas molecule to two gas molecules. Since the positional probability for gas molecules is much greater than that for solids, the entropy will increase in the forward reaction.

\[\Delta H < 0 \] for this reaction because the percent CO increases with temperature. The equilibrium is shifted to the right when heat is added showing that heat is a reactant.
d) If the initial amount of C2 is not doubled, there would be no effect on the % CO in the equilibrium mixture because looking at the equilibrium constant \(K = \frac{[CO]}{[C_2][O]} \), carbon is not a factor since it is a solid. Therefore, doubling the initial amount of C2 would not produce a change in the equilibrium mixture.
8. Carbon (graphite), carbon dioxide, and carbon monoxide form an equilibrium mixture, as represented by the equation above.

\[\text{C(s)} + \text{CO}_2(g) \rightleftharpoons 2 \text{CO}(g) \]

(a) Predict the sign for the change in entropy, \(\Delta S \), for the reaction. Justify your prediction.

(b) In the table below are data that show the percent of CO in the equilibrium mixture at two different temperatures. Predict the sign for the change in enthalpy, \(\Delta H \), for the reaction. Justify your prediction.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>% CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C</td>
<td>60</td>
</tr>
<tr>
<td>850°C</td>
<td>94</td>
</tr>
</tbody>
</table>

(c) Appropriately complete the potential energy diagram for the reaction by finishing the curve on the graph below. Also, clearly indicate \(\Delta H \) for the reaction on the graph.

(d) If the initial amount of C(s) were doubled, what would be the effect on the percent of CO in the equilibrium mixture? Justify your answer.

2. The \(\Delta S \) would be positive, because the reactants are 1 mole of gas and 1 mole of solid, the product is 2 moles of gas. Entropy is the measurement of disorder, and gas has a higher entropy than solids.

b. The \(\Delta H \) is positive, and the reaction is endothermic. As heat is added the amount of CO increases. According to Le Chatelier’s principle, as the temperature increases when heat is a reactant, the reaction will
proceed to the right, producing more products.

a. see graph

d. If C were doubled, the percent of CO would increase. C is a reactant and CO is a product. According to Le Chatelier's principle, when the concentration of a reactant is increased, the reaction proceeds to the right, producing more products.
8. Carbon (graphite), carbon dioxide, and carbon monoxide form an equilibrium mixture, as represented by the equation above.

\[\text{C(graphite)} + \text{CO}_2(g) \rightleftharpoons 2 \text{CO(g)} \]

(a) Predict the sign for the change in entropy, \(\Delta S \), for the reaction. Justify your prediction.

(b) In the table below are data that show the percent of CO in the equilibrium mixture at two different temperatures. Predict the sign for the change in enthalpy, \(\Delta H \), for the reaction. Justify your prediction.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>% CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>700°C</td>
<td>60</td>
</tr>
<tr>
<td>850°C</td>
<td>94</td>
</tr>
</tbody>
</table>

(c) Appropriately complete the potential energy diagram for the reaction by finishing the curve on the graph below. Also, clearly indicate \(\Delta H \) for the reaction on the graph.

(d) If the initial amount of C(graphite) were doubled, what would be the effect on the percent of CO in the equilibrium mixture? Justify your answer.

\[\text{(a) Since } \Delta \text{Nagaseous} \text{ is } 2-1 = 1, \Delta S \text{ will be positive.} \]

\[\text{(b) Increasing the temperature causes the equilibrium to shift in favor of the products side so heat must be on the reactants side. This indicates that the reaction is endothermic so } \Delta H \text{ is positive.} \]

GO ON TO THE NEXT PAGE.
(d) Increasing the amount of CO would cause the equilibrium to shift in favor of the products side and the percent of CO in the mixture would increase.