The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
3. Consider the hydrocarbon pentane, C_5H_{12} (molar mass 72.15 g).

(a) Write the balanced equation for the combustion of pentane to yield carbon dioxide and water.

(b) What volume of dry carbon dioxide, measured at 25°C and 785 mm Hg, will result from the complete combustion of 2.50 g of pentane?

(c) The complete combustion of 5.00 g of pentane releases 243 kJ of heat. On the basis of this information, calculate the value of ΔH for the complete combustion of one mole of pentane.

(d) Under identical conditions, a sample of an unknown gas effuses into a vacuum at twice the rate that a sample of pentane gas effuses. Calculate the molar mass of the unknown gas.

(e) The structural formula of one isomer of pentane is shown below. Draw the structural formulas for the other two isomers of pentane. Be sure to include all atoms of hydrogen and carbon in your structures.

\[
\begin{align*}
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\end{align*}
\]

\[3 \quad C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O\]

\[
\frac{2.50\text{ g} \times \frac{1\text{ mol} \ C_5H_{12}}{72.15\text{ g}} \times 5\text{ mol} \ CO_2}{1\text{ mol} \ C_5H_{12}} = 1.73\text{ mol} \ CO_2
\]

\[
\frac{785\text{ mm Hg}}{760\text{ mm Hg}} \times \frac{1\text{ atm}}{1.03\text{ atm}} = 1.03\text{ atm}
\]

\[PV = nRT \rightarrow V = \frac{(1.73\text{ mol}) \cdot 0.0821 \cdot (298\text{ K})}{1.03\text{ atm}} = \text{4.10 L CO}_2
\]

(c) releases heat \rightarrow exothermic reaction so ΔH must be negative.

\[
\frac{5.00\text{ g} \times \frac{1\text{ mol} \ C_5H_{12}}{72.15\text{ g}}}{243\text{ kJ}} = \frac{x}{1}\text{ mol}
\]

\[
x = \frac{3.50649\text{ kJ}}{0.693\text{ mol}}
\]

\[
\Delta H = -3.51 \times 10^3\text{ kJ}
\]

GO ON TO THE NEXT PAGE.
\[\sqrt{\frac{M_2}{M_1}} = \frac{C_1}{C_2} \quad 1 = \text{pentane} \]
\[r = \text{unknown} \]
\[\sqrt{\frac{M_2}{M_1}} = \frac{5}{8} = \frac{1}{2} \]
\[\frac{M_2}{72.15g} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]
\[M_2 = \frac{72.15g}{4} = 18.04g \]

\[\text{H} - \text{C} - \text{C} - \text{C} - \text{C} - \text{H} \]
\[\text{H} - \text{C} - \text{H} \]
3. Consider the hydrocarbon pentane, C_5H_{12} (molar mass 72.15 g).

(a) Write the balanced equation for the combustion of pentane to yield carbon dioxide and water.

(b) What volume of dry carbon dioxide, measured at 25°C and 785 mm Hg, will result from the complete combustion of 2.50 g of pentane?

(c) The complete combustion of 5.00 g of pentane releases 243 kJ of heat. On the basis of this information, calculate the value of ΔH for the complete combustion of one mole of pentane.

(d) Under identical conditions, a sample of an unknown gas effuses into a vacuum at twice the rate that a sample of pentane gas effuses. Calculate the molar mass of the unknown gas.

(e) The structural formula of one isomer of pentane is shown below. Draw the structural formulas for the other two isomers of pentane. Be sure to include all atoms of hydrogen and carbon in your structures.

\[
\begin{align*}
\text{(a)} & \quad \text{C}_5\text{H}_{12} + 8\text{O}_2 \rightarrow 5\text{CO}_2 + 6\text{H}_2\text{O} \\
\text{(b)} & \quad \frac{2.50 \text{ g}}{1 \text{ mol C}_5\text{H}_{12}} \times \frac{5 \text{ mol CO}_2}{1 \text{ mol C}_5\text{H}_{12}} = 1.74 \text{ mol CO}_2 \\
\text{PV} & = nRT \\
\frac{785 \text{ mmHg}}{1 \text{ atm}} & = 1.03 \text{ atm} \\
V & = \frac{nRT}{P} \\
V & = \frac{(1.174 \text{ mol})(0.08205 \text{ L atm/mol K})}{1.03 \text{ atm}} = 4.13 \text{ L CO}_2 \\
\text{(c)} & \quad -243 \text{ kJ} \left/ 72.15 \text{ g C}_5\text{H}_{12} \right. = -3450.6 \text{ kJ/mol} = \Delta H \\
\text{(d)} & \quad \frac{2}{1} = \sqrt{72.15} \\
\frac{2}{1} & = \sqrt{M_1} \\
18.04 \text{ g/mol} & = M_1, \text{ unknown gas} \\
\text{(e)} & \quad \begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\end{align*}
\]
3. Consider the hydrocarbon pentane, \(\text{C}_5\text{H}_{12} \) (molar mass 72.15 g).

(a) Write the balanced equation for the combustion of pentane to yield carbon dioxide and water.

(b) What volume of dry carbon dioxide, measured at 25ºC and 785 mm Hg, will result from the complete combustion of 2.50 g of pentane?

(c) The complete combustion of 5.00 g of pentane releases 243 kJ of heat. On the basis of this information, calculate the value of \(\Delta H \) for the complete combustion of one mole of pentane.

(d) Under identical conditions, a sample of an unknown gas effuses into a vacuum at twice the rate that a sample of pentane gas effuses. Calculate the molar mass of the unknown gas.

(e) The structural formula of one isomer of pentane is shown below. Draw the structural formulas for the other two isomers of pentane. Be sure to include all atoms of hydrogen and carbon in your structures.

\[
\begin{align*}
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\end{align*}
\]

\[\text{(a)} \quad \text{C}_5\text{H}_{12}(g) + 8\text{O}_2(g) \rightarrow 5\text{CO}_2(g) + 6\text{H}_2\text{O}(l)
\]

\[\text{(b)} \quad \text{PV} = \text{RT} \quad 2.50 \text{ g C}_5\text{H}_{12} \quad 1 \text{ mol C}_5\text{H}_{12} = 0.033 \text{ mol}
\]

\[72.15 \text{ g C}_5\text{H}_{12}
\]

\[
(1.03 \text{ atm})(V) = (3.5 \times 10^{-2} \text{ mol})(0.021 \text{ L atm/mol K})
\]

\[V = 0.83 \text{ L} = 830 \text{ mL}
\]

\[\text{(c)} \quad \text{L mol C}_5\text{H}_{12} \quad 1 \text{ mol C}_5\text{H}_{12} = 0.69 \text{ mol}
\]

\[72.15 \text{ g C}_5\text{H}_{12}
\]

\[\text{1 mol} \quad 243 \text{ kJ} \approx 352 \text{ kJ/mol}
\]

GO ON TO THE NEXT PAGE.
E) \[\text{mass} = 72.15 \text{ g } \text{C}_2\text{H}_6 \times 2 = 144.3 \text{ g MM unknown} \]

\[\text{structure} \]

\[\text{structure} \]

\[\text{structure} \]