2. Answer parts (a) through (e) below, which relate to reactions involving silver ion, Ag⁺.

The reaction between silver ion and solid zinc is represented by the following equation.

\[2 \text{Ag}^+(aq) + \text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2 \text{Ag}(s) \]

(a) A 1.50 g sample of Zn is combined with 250. mL of 0.110 M AgNO₃ at 25°C.

(i) Identify the limiting reactant. Show calculations to support your answer.

(ii) On the basis of the limiting reactant that you identified in part (i), determine the value of [Zn²⁺] after the reaction is complete. Assume that volume change is negligible.

(b) Determine the value of the standard potential, \(E^\circ \), for a galvanic cell based on the reaction between AgNO₃(aq) and solid Zn at 25°C.

Another galvanic cell is based on the reaction between Ag⁺(aq) and Cu(s), represented by the equation below. At 25°C, the standard potential, \(E^\circ \), for the cell is 0.46 V.

\[2 \text{Ag}^+(aq) + \text{Cu}(s) \rightarrow \text{Cu}^{2+}(aq) + 2 \text{Ag}(s) \]

(c) Determine the value of the standard free-energy change, \(\Delta G^\circ \), for the reaction between Ag⁺(aq) and Cu(s) at 25°C.

(d) The cell is constructed so that [Cu²⁺] is 0.045 M and [Ag⁺] is 0.010 M. Calculate the value of the potential, \(E \), for the cell.

(e) Under the conditions specified in part (d), is the reaction in the cell spontaneous? Justify your answer.

\[\text{Moles of Zn} = \frac{1.50 \text{ g}}{65.4 \text{ g/mol}} = 0.0229 \text{ mol Zn} \]

\[\text{Moles of Ag}^+ = 0.250 \text{ L} \times 0.110 \text{ M} = 0.275 \text{ mol Ag}^+ \]

The molar ratio of Ag⁺ to Zn is 2:1.

If we started with 0.0229 mol Zn, we would require

\[0.0229 \text{ mol Zn} \times \frac{2 \text{ mol Ag}^+}{1 \text{ mol Zn}} = 0.0458 \text{ mol Ag}^+ \]

But we require 0.0458 mol Ag⁺ and we only have 0.275 mol Ag⁺, Ag⁺ is the limiting reactant.
Since we have 250 mL of solution, and the volume change upon addition of
Zn is negligible, \[[Zn^{2+}] = \frac{M}{V} = \frac{0.138 \, \text{mols}}{0.250 \, \text{L}} = 0.552 \, \text{M} \]

The concentration of Zn\(^{2+}\) is 0.552 M.

\(a \) \ \ E^\circ = E^\circ_{\text{red}} (\text{cathode}) - E^\circ_{\text{red}} (\text{anode}) \)

Half reactions:

At cathode: \(\text{Ag}^+ + e^- \rightarrow \text{Ag} \) \[E^\circ_{\text{red}} = +0.80 \, \text{V} \]

At anode: \(\text{Zn} - \rightarrow \text{Zn}^{2+}\) \(+2e^- \) \[E^\circ_{\text{red}} = -0.76 \, \text{V} \]

\[E^\circ = +0.80 \, \text{V} - (-0.76 \, \text{V}) = 1.56 \, \text{V} \]

\(c \) \ \ \[\Delta G^\circ = -nFE^\circ \] \(\text{where} \ n = 2 \text{mols of electrons} \]

\[\Delta G^\circ = -(2)(96,500)(0.46 \, \text{V}) = -92,400 \, \text{J} \]

\[E^\circ = -0.46 \, \text{V} \]

\(d \) We use \[E = E^\circ_{\text{cell}} - \frac{RT}{nF} \ln Q \] but at 25°C, \[E = E^\circ_{\text{cell}} - \frac{0.0592}{2} \log Q \]

In this case: \[Q = \frac{[\text{Cu}^{2+}]}{[\text{Ag}^+]^2} = \frac{(0.045 \, \text{M})}{(0.010 \, \text{M})^2} = 4.5 \times 10^2 \]

\[E = (0.46 \, \text{V}) - \frac{0.0592}{2} \log (4.5 \times 10^2) \]

\[E = 0.38 \, \text{V} \]

\(e \) Yes, the reaction in the cell is spontaneous since \(E > 0 \). For a reaction to be
spontaneous \(E \) must be greater than zero.

To check whether \(\Delta G \) is negative under these conditions to prove that the reaction is spontaneous:

\[\Delta G = \Delta G^\circ + RT \ln Q \]

\[\Delta G = -(8.9 \times 10^4 \, \text{J}) + (9.31 \, \text{mJ} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})(298 \, \text{K}) \ln (4.5 \times 10^2) \]

\[\Rightarrow \Delta G < 0 \quad \text{the reaction is spontaneous} \]
2. Answer parts (a) through (e) below, which relate to reactions involving silver ion, \(\text{Ag}^+ \).

The reaction between silver ion and solid zinc is represented by the following equation.

\[
2 \text{Ag}^+(aq) + \text{Zn}(s) \rightarrow \text{Zn}^2+(aq) + 2 \text{Ag}(s)
\]

(a) A 1.50 g sample of \(\text{Zn} \) is combined with 250. mL of 0.110 \(M \) \(\text{AgNO}_3 \) at 25\(^\circ\)C.

(i) Identify the limiting reactant. Show calculations to support your answer.

(ii) On the basis of the limiting reactant that you identified in part (i), determine the value of \([\text{Zn}^{2+}]\) after the reaction is complete. Assume that volume change is negligible.

(b) Determine the value of the standard potential, \(E^\circ \), for a galvanic cell based on the reaction between \(\text{AgNO}_3(aq) \) and solid \(\text{Zn} \) at 25\(^\circ\)C.

Another galvanic cell is based on the reaction between \(\text{Ag}^+(aq) \) and \(\text{Cu(s)} \), represented by the equation below. At 25\(^\circ\)C, the standard potential, \(E^\circ \), for the cell is 0.46 V.

\[
2 \text{Ag}^+(aq) + \text{Cu(s)} \rightarrow \text{Cu}^2+(aq) + 2 \text{Ag}(s)
\]

(c) Determine the value of the standard free-energy change, \(\Delta G^\circ \), for the reaction between \(\text{Ag}^+(aq) \) and \(\text{Cu(s)} \) at 25\(^\circ\)C.

(d) The cell is constructed so that \([\text{Cu}^{2+}]\) is 0.045 \(M \) and \([\text{Ag}^+]\) is 0.010 \(M \). Calculate the value of the potential, \(E \), for the cell.

(e) Under the conditions specified in part (d), is the reaction in the cell spontaneous? Justify your answer.
(a) \[
\frac{0.28 \text{ mol } Ag^+}{1 \text{ mol } Zn^{2+}}
\rightarrow 0.14 \text{ mol } Zn^{2+}
\]
\[
0.14 \text{ mol } / 0.250 \text{ L} = 0.560 \text{ m } Zn^{2+}
\]

(b) \[
2Ag^+ + 2e^- \rightarrow 2Ag(s)
\]
\[
2Zn \rightarrow Zn^{2+} + 2e^-
\]
\[
E = \frac{0.142 \text{ V} + 0.764 \text{ V}}{2} = 0.458 \text{ V}
\]

(c) \[
\Delta G = -nFE^0 = -2(96,500 \text{ J/mol V})(0.458 \text{ V})
\]
\[
\Delta G = -88,780 \text{ J/mol}
\]

(d) \[
E_{\text{cell}} = E^0 - \frac{0.0592 \log Q}{2}
\]
\[
E_{\text{cell}} = 0.456 - \frac{0.0592 \log (0.045)}{2}
\]
\[
E_{\text{cell}} = 0.38 \text{ V}
\]

(e) Yes, it is spontaneous since the \(E \) of the cell is a positive number. This means the potential is increases, which happens when a reaction is spontaneous and needs no change or energy to start the reaction.
2. Answer parts (a) through (e) below, which relate to reactions involving silver ion, Ag^+. The reaction between silver ion and solid zinc is represented by the following equation.

$$2 \text{Ag}^+(aq) + \text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2 \text{Ag}(s)$$

(a) A 1.50 g sample of Zn is combined with 250. mL of 0.110 M AgNO$_3$ at 25°C.

(i) Identify the limiting reactant. Show calculations to support your answer.

(ii) On the basis of the limiting reactant that you identified in part (i), determine the value of $[\text{Zn}^{2+}]$ after the reaction is complete. Assume that volume change is negligible.

(b) Determine the value of the standard potential, E°, for a galvanic cell based on the reaction between AgNO$_3$(aq) and solid Zn at 25°C.

Another galvanic cell is based on the reaction between Ag$^+(aq)$ and Cu(s), represented by the equation below. At 25°C, the standard potential, E°, for the cell is 0.46 V.

$$2 \text{Ag}^+(aq) + \text{Cu}(s) \rightarrow \text{Cu}^{2+}(aq) + 2 \text{Ag}(s)$$

(c) Determine the value of the standard free-energy change, ΔG°, for the reaction between Ag$^+(aq)$ and Cu(s) at 25°C.

(d) The cell is constructed so that $[\text{Cu}^{2+}]$ is 0.045 M and $[\text{Ag}^+]$ is 0.010 M. Calculate the value of the potential, E, for the cell.

(e) Under the conditions specified in part (d), is the reaction in the cell spontaneous? Justify your answer.

\[\begin{array}{ll}
\text{(d) i)} & \text{2Ag}^+ + \text{Zn}(s) \rightarrow \text{Zn}^{2+} + 2\text{Ag}(s) \\
\text{250 mL} & \text{1.10 M} \\
\text{1.50 g Zn} & \text{1 mol} \\
65.39 g \text{Zn} & = 0.0229 mol \text{Zn} \leftarrow \text{LR} \\
\text{250 mL Ag}^+ & \text{1.10 M} \\
\text{100 mL} & = 0.0275 mol \text{Ag} \leftarrow \text{less mol used up factor} \\
\text{ii)} & \text{0.0229 mol Zn} \\
\text{1 mol Zn} & = 0.0229 mol \text{Zn}^{2+} \\
\text{1 mol Zn} & = \frac{0.0229 \text{ mol Zn}^{2+}}{250 \text{ L}} = 0.0916 M \\
\end{array} \]
ADDITIONAL PAGE FOR ANSWERING QUESTION 2.

b) \[\text{Ag}^+ + e^- \rightarrow \text{Ag}(s), \quad E^{\circ} = 0.80 \]
\[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn}(s), \quad E^{\circ}_{\text{red}} = -0.76 \]
\[\text{Zn}(s) \rightarrow \text{Zn}^{2+} + 2e-, \quad E^{\circ}_{\text{oxi}} = 0.76 \]
\[E^{\circ}_{\text{cell}} = 0.80 - 0.76 = 0.04 \text{V} \]
\[\Delta G^{\circ} = -nF\Delta E^{\circ} \]
\[= (-3)(96,500 \text{ C/mol}) (0.46 \text{V}) \]
\[= -133,170 \]

\[E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cell}} - \frac{0.0592}{2} \log a_a @ 25^\circ \text{C} \]
\[0.46 \text{V} - \frac{0.0592}{2} \log \frac{0.045 M}{0.010 M} \]
\[E^{\circ}_{\text{cell}} = 0.44 \]

\(\therefore \) Yes, it is spontaneous because the \(E^{\circ}_{\text{cell}} \) is positive. This means the reaction will undergo without reaction.

GO ON TO THE NEXT PAGE.