AP® Chemistry
2001 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.
8. Account for each of the following observations about pairs of substances. In your answers, use appropriate principles of chemical bonding and/or intermolecular forces. In each part, your answer must include references to both substances.

(a) Even though \(\text{NH}_3 \) and \(\text{CH}_4 \) have similar molecular masses, \(\text{NH}_3 \) has a much higher normal boiling point (\(-33^\circ\text{C}\)) than \(\text{CH}_4 \) (\(-164^\circ\text{C}\)).

(b) At 25\(^\circ\text{C}\) and 1.0 atm, ethane (\(\text{C}_2\text{H}_6 \)) is a gas and hexane (\(\text{C}_6\text{H}_{14} \)) is a liquid.

(c) Si melts at a much higher temperature (1,410\(^\circ\text{C}\)) than \(\text{Cl}_2 \) (\(-101^\circ\text{C}\)).

(d) MgO melts at a much higher temperature (2,852\(^\circ\text{C}\)) than NaF (993\(^\circ\text{C}\)).

(a) \(\text{NH}_3 \) has a much higher boiling pt compared to \(\text{CH}_4 \) because \(\text{CH}_4 \) has only London Dispersion Forces while \(\text{NH}_3 \), which is polar, has dipole-dipole forces & even more specifically hydrogen bonding - which is stronger than regular dipole dipole.

Since \(\text{NH}_3 \)'s intermolecular forces are bigger than those of \(\text{CH}_4 \), the bonds take more KE to break them & thus have a higher boiling pt.

(b) Both have only LDF but since \(\text{C}_6\text{H}_{14} \) is a more complex molecule, it has more \(\sigma \)- & thus more polarization opportunities. Because of this, \(\text{C}_6\text{H}_{14} \) has more chances of inducing dipole forces & thus the intermolecular forces between \(\text{C}_6\text{H}_{14} \) molecules are higher & require more KE to break.

Thus, @ 25\(^\circ\text{C}\), there is enough KE to make \(\text{C}_6\text{H}_{14} \) into a gas while \(\text{C}_6\text{H}_{14} \) is a liquid.

(c) Si has a covalent network bonding structure while \(\text{Cl}_2 \) has only LDF forces. Covalent network is a very rigid bonding structure and is hard to break compared to the easily broken LDF \(\text{Cl}_2 \) bonds. Thus Si melts at higher temp than \(\text{Cl}_2 \).

(d) Coulomb's law states that the higher the atoms change the stronger the bond between the atoms. Mg has a \(+2\) charge & \(\text{O} \) has a \(-2\) charge which are greater than the +1 & -1 charges of \(\text{Na} \) & \(\text{F} \) respectively. Thus, breaking the ion
bond between NaF is easier than the bond between MgO; thus MgO melts at a higher temp than NaF.
8. Account for each of the following observations about pairs of substances:
principles of chemical bonding and/or intermolecular forces. In each part, account for both substances.

(a) Even though NH₃ and CH₄ have similar molecular masses, NH₃ has a much higher normal boiling point (-33°C) than CH₄ (-164°C).

(b) At 25°C and 1.0 atm, ethane (C₂H₆) is a gas and hexane (C₆H₁₄) is a liquid.

(c) Si melts at a much higher temperature (1,410°C) than Cl₂ (-101°C).

(d) MgO melts at a much higher temperature (2,852°C) than NaF (993°C).

a. NH₃ has a higher boiling point than CH₄ because NH₃ has an unbonded electron pair which allows the NH₃ to form hydrogen bonds, which are much stronger intermolecular forces than the London forces in CH₄. Therefore, the stronger the intermolecular forces, the higher the boiling point.

b. C₆H₁₄ is a much smaller molecule than C₂H₆. Because C₂H₆ is so much larger, its instantaneous dipoles are much stronger than those of C₆H₁₄. Since neither can form hydrogen bonds or dipole-dipole forces (they are non-polar and have no F-O or N) the strongest force is the London forces created by instantaneous dipoles; since the intermolecular forces in C₂H₆ are much stronger, it is far more likely to condense into a liquid.

c. Si melts at a much higher temperature because it forms bonds with other silicon molecules each to complete its octet, while Cl₂ only form in pairs. Since Si have so many more bonds, it takes a much larger temperature to liquify.
d. MgO and NaF are both ionic, however, MgO is formed from Mg$^{2+}$ and O$^{2-}$ ions which have a difference in charge of 1, while Na$^+$ and F$^-$ (the ions that form NaF) have only a 1 difference of 2 charges. Because the strength of the bonds are based on the difference in charge, the MgO takes far more heat to melt.
8. Account for each of the following observations about pairs of substances. In your answers, use appropriate principles of chemical bonding and/or intermolecular forces. In each part, your answer must include references to both substances.

(a) Even though NH₃ and CH₄ have similar molecular masses, NH₃ has a much higher normal boiling point (−33°C) than CH₄ (−164°C).

(b) At 25°C and 1.0 atm, ethane (C₂H₆) is a gas and hexane (C₆H₁₄) is a liquid.

(c) Si melts at a much higher temperature (1,410°C) than Cl₂ (−101°C).

(d) MgO melts at a much higher temperature (2,852°C) than NaF (993°C).

- NH₃ has a much higher bp due to H-bonding.
 That is, NH₃ has a much stronger H-bonding than the dispersion forces that CH₄ has.

- They both have the same forces that make them have a much greater molar mass. This increases the melting point.

- Si tends to forms molecular crystals which have a very large melting point. Cl₂ has only weak dispersion forces that can be overcome more easily than Si.

- MgO and NaF are both ionic compounds.
 NaF has a greater difference in electronegativity.