AP® Chemistry
2001 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
CHEMISTRY
Section II
(Total time—90 minutes)

Part A
Time—40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in the booklet with the pink cover. Do NOT write your answers on the green insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

1. Answer the following questions relating to the solubility of the chlorides of silver and lead.

(a) At 10°C, 8.9 \times 10^{-5} \text{ g of AgCl(s)} will dissolve in 100. mL of water.

(i) Write the equation for the dissociation of AgCl(s) in water.

(ii) Calculate the solubility, in mol L^{-1}, of AgCl(s) in water at 10°C.

(iii) Calculate the value of the solubility-product constant, \(K_{sp} \), for AgCl(s) at 10°C.

(b) At 25°C, the value of \(K_{sp} \) for PbCl_2(s) is 1.6 \times 10^{-5} and the value of \(K_{sp} \) for AgCl(s) is 1.8 \times 10^{-10}.

(i) If 60.0 mL of 0.0400 \text{ M NaCl(aq)} is added to 60.0 mL of 0.0300 \text{ M Pb(NO}_3\text{)}_2(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer.

(ii) Calculate the equilibrium value of \([\text{Pb}^{2+}(\text{aq})]\) in 1.00 L of saturated PbCl_2 solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs.

(iii) If 0.100 \text{ M NaCl(aq)} is added slowly to a beaker containing both 0.120 \text{ M AgNO}_3(aq) and 0.150 \text{ M Pb(NO}_3\text{)}_2(aq) at 25°C, which will precipitate first, AgCl(s) or PbCl_2(s)? Show calculations to support your answer.
(b)(i) 0.6 L X .04 m = .0024 mol Cl⁻/12 L = .02 m Cl⁻
.06 L X .03 m = .0018 mol Pb^{2+}/12 L = .015 m Pb^{2+}
PbCl₂ ⇌ Pb^{2+} + 2Cl⁻

\[Q = [\text{Pb}^{2+}] [\text{Cl}^-]^2 = (0.15 \text{ m Pb}^{2+})(0.02 \text{ m Cl}^-)^2 = 6 \times 10^{-10}\]

\[K_{sp} = 1.6 \times 10^{-5}\]

\[K_{sp} > Q\]

No precipitate will form.

(ii) \[K_{sp} = 1.6 \times 10^{-5}\]

\[K_{sp} = [\text{Pb}^{2+}] [\text{Cl}^-]^2\]

\[1.6 \times 10^{-5} = [\text{Pb}^{2+}] \cdot (.25)^2\]

\[2.56 \times 10^{-4} = [\text{Pb}^{2+}]\]

(iii) \[\text{AgCl} \rightleftharpoons \text{Ag}^+ + \text{Cl}^-\]

\[K_{sp} = 1.8 \times 10^{-10}\]

\[Q = [\text{Ag}^+] [\text{Cl}^-] = 1.8 \times 10^{-10}\]

\[1.8 \times 10^{-10} < [\text{Ag}^+] [\text{Cl}^-]\]

\[1.8 \times 10^{-10} < [\cdot 12 \text{ m Ag}^+] [\text{Cl}^-]\]

\[1.5 \times 10^{-9} < [\text{Cl}^-]\]

\[\text{PbCl}_2 \rightleftharpoons \text{Pb}^{2+} + 2\text{Cl}^-\]

\[K_{sp} = 1.6 \times 10^{-5}\]

\[Q = [\text{Pb}^{2+}] [\text{Cl}^-]^2\]

\[1.6 \times 10^{-5} < [\text{Pb}^{2+}] [\text{Cl}^-]^2\]

\[1.6 \times 10^{-5} < (0.15 \text{ m Pb}^{2+}) [\text{Cl}^-]^2\]

\[1.03 \times 10^{-2} < [\text{Cl}^-]\]

Ag₃Cl will precipitate first because a smaller concentration of Cl⁻ is necessary to form a precipitate.
CHEMISTRY
Section II
(Total time—90 minutes)

Part A
Time—40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in the booklet with the pink cover. Do NOT write your answers on the green insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

1. Answer the following questions relating to the solubility of the chlorides of silver and lead.

(a) At 10°C, 8.9 x 10^{-5} g of AgCl(s) will dissolve in 100. mL of water.
 (i) Write the equation for the dissociation of AgCl(s) in water.
 (ii) Calculate the solubility, in mol L^{-1}, of AgCl(s) in water at 10°C.
 (iii) Calculate the value of the solubility-product constant, K_{sp}, for AgCl(s) at 10°C.

(b) At 25°C, the value of K_{sp} for PbCl_{2}(s) is 1.6 x 10^{-5} and the value of K_{sp} for AgCl(s) is 1.8 x 10^{-10}.
 (i) If 60.0 mL of 0.0400 M NaCl(aq) is added to 60.0 mL of 0.0300 M Pb(NO_{3})_{2}(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer.
 (ii) Calculate the equilibrium value of [Pb^{2+}(aq)] in 1.00 L of saturated PbCl_{2} solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs.
 (iii) If 0.100 M NaCl(aq) is added slowly to a beaker containing both 0.120 M AgNO_{3}(aq) and 0.150 M Pb(NO_{3})_{2}(aq) at 25°C, which will precipitate first, AgCl(s) or PbCl_{2}(s)? Show calculations to support your answer.

\[\text{a) i. } \text{AgCl}(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq) \]
\[\text{ii. } \frac{8.9 \times 10^{-5} \text{ g}}{1000 \text{ mL}} = \frac{1 \text{ mol}}{143.4 \text{ g}} = 6.2 \times 10^{-6} \text{ mol/L} \]
\[\text{iii. } K_{sp} = [Ag^{+}][Cl^{-}] \]
\[= (6.2 \times 10^{-6} \text{ M})^2 \]
\[= 3.9 \times 10^{-11} \text{ mol}^2/\text{L}^2 \]
b) i. $2\text{Cl}^- + \text{Pb}^{2+} \rightarrow \text{PbCl}_2$

\[
\begin{align*}
[\text{Cl}^-] &= \frac{60.0 \text{ mL}(0.0400 \text{ M})}{120.0 \text{ mL}} \\
&= 0.0200 \text{ M}
\end{align*}
\]

\[
\begin{align*}
[\text{Pb}^{2+}] &= \frac{60.0 \text{ mL}(0.0300 \text{ M})}{120.0 \text{ mL}} \\
&= 0.0150 \text{ M}
\end{align*}
\]

\[Q = [\text{Pb}^{2+}][\text{Cl}^-]^2\]

\[= (0.0150 \text{ M})(0.0200 \text{ M})^2\]

\[= 6.00 \times 10^{-6}\]

\[K_{sp} = 1.8 \times 10^{-5}\]

\[K_{sp} > Q \therefore \text{no precipitate will form}\]

ii. $\text{PbCl}_2 \rightarrow \text{Pb}^{2+} + 2\text{Cl}^-$

\[
\begin{align*}
[\text{Cl}^-] &= \frac{0.250 \text{ mol}}{1.00 \text{ L}} \\
&= 0.250 \text{ M}
\end{align*}
\]

\[K_{sp} = [\text{Pb}^{2+}][\text{Cl}^-]^2\]

\[= \frac{1.8 \times 10^{-5}}{(0.250)^2}\]

\[= 2.6 \times 10^{-6}\text{ M}\]

iii. when $Q = K_{sp}$, precipitate starts forming

Q for $\text{AgCl} = [\text{Ag}^+][\text{Cl}^-]$

\[= (0.120 \text{ M})(\text{?})\]

\[K_{sp} = [\text{Ag}^+][\text{Cl}^-] \times 1.8 \times 10^{-10} \text{ M}^2\]

\[= 0.120 \text{ M} \times 1.0 \times 10^{-9} \text{ M}\]

\[= 1.2 \times 10^{-9} \text{ M}\]

Q for $\text{PbCl}_2 = [\text{Pb}^{2+}][\text{Cl}^-]^2$

\[= 0.150 \text{ M}[\text{Cl}^-]^2\]

\[K_{sp} = [\text{Pb}^{2+}][\text{Cl}^-]^2 \times 1.6 \times 10^{-5} \text{ M}\]

\[= (0.150 \text{ M})(1.6 \times 10^{-5})\]

\[= 1.0 \times 10^{-8} \text{ M}\]

PbCl$_2$ will precipitate first
CHEMISTRY
Section II
(Total time—90 minutes)

Part A
Time—40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in the booklet with the pink cover. Do NOT write your answers on the green insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

1. Answer the following questions relating to the solubility of the chlorides of silver and lead.

 (a) At 10°C, 8.9×10^{-5} g of AgCl(s) will dissolve in 100. mL of water.
 (i) Write the equation for the dissociation of AgCl(s) in water.
 (ii) Calculate the solubility, in mol L$^{-1}$, of AgCl(s) in water at 10°C.
 (iii) Calculate the value of the solubility-product constant, K_{sp}, for AgCl(s) at 10°C.

 (b) At 25°C, the value of K_{sp} for PbCl$_2$(s) is 1.6×10^{-5} and the value of K_{sp} for AgCl(s) is 1.8×10^{-10}.
 (i) If 60.0 mL of 0.0400 M NaCl(aq) is added to 60.0 mL of 0.0300 M Pb(NO$_3$)$_2$(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer.
 (ii) Calculate the equilibrium value of [Pb$^{2+}$(aq)] in 1.00 L of saturated PbCl$_2$ solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs.
 (iii) If 0.100 M NaCl(aq) is added slowly to a beaker containing both 0.120 M AgNO$_3$(aq) and 0.150 M Pb(NO$_3$)$_2$(aq) at 25°C, which will precipitate first, AgCl(s) or PbCl$_2$(s)? Show calculations to support your answer.

\[\text{(a) } \text{AgCl(s) } \rightarrow \text{Ag}^+(aq) + \text{Cl}^-(aq) \]

\[\text{(b) } \text{mol/L} = \frac{8.9 \times 10^{-5} \text{ g}}{143.323 \text{ g/mol}} \times \frac{1 \text{ mol}}{6.2 \times 10^{-7} \text{ L}} = 6.2 \times 10^{-6} \text{ mol/L} \]

\[[\text{AgCl}] = 6.2 \times 10^{-7} \times \frac{6.2 \times 10^{-6} \text{ M}}{0.100 \text{ L}} = 6.2 \times 10^{-13} \text{ M} \]
iii) \[K_{sp} = [Ag^{+}][Cl^{-}] \]

\[= \left[2.209 \times 10^{-7} \right][6.209 \times 10^{-6}] \]

\[= 5.86 \times 10^{-13} \]

\[K_{sp} = 5.9 \times 10^{-5} \]

b) \[NaCl(aq) + Pb(NO_3)_2(aq) \rightarrow 2NaNO_3(aq) + PbCl_2(s) \]

- moles Pb = 0.0300 mol x 0.0600 L = 0.0018 mol

- moles Cl = 0.0400 mol x 0.0600 L = 0.0024 mol

0.0012 mol of PbCl_2 will be formed, however, this amount is so small that it is almost negligible.

ii) \[PbCl_2(s) \rightarrow Pb^{2+} + 2Cl^- \]

\[K_{sp}(PbCl_2) = 1.6 \times 10^{-5} = [Pb^{2+}][Cl^-]^2 \]

\[NaCl \rightarrow Na^+ + Cl^- \]

\[K_{sp} = 1.6 \times 10^{-5} = [Cl^-][Cl^-] \]

\[\text{Assume } x + 0.250 = 0.250 \]

\[x = 2.5 \times 10^{-4} \]

\[[Pb^{2+}] = 2.5 \times 10^{-4} \]

iii) \[NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl \] \[2NaCl + Pb(NO_3)_2 \rightarrow 2NaNO_3 + PbCl_2 \]

\[K_{sp}(AgCl) = 1.8 \times 10^{-10} \]

\[K_{sp}(PbCl_2) = 1.6 \times 10^{-5} \]

Since AgCl has a lower solubility than PbCl_2, the AgCl(s) will be precipitated out first.