These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. The molar mass of an unknown solid, which is nonvolatile and a nonelectrolyte, is to be determined by the freezing-point depression method. The pure solvent used in the experiment freezes at 10°C and has a known molal freezing-point depression constant, \(K_f \). Assume that the following materials are also available.

- test tubes
- stirrer
- pipet
- thermometer
- balance
- beaker
- stopwatch
- graph paper
- hot-water bath
- ice

(a) Using the two sets of axes provided below, sketch cooling curves for (i) the pure solvent and for (ii) the solution as each is cooled from 20°C to 0.0°C.

![Cooling Curves](image)

(b) Information from these graphs may be used to determine the molar mass of the unknown solid.

(i) Describe the measurements that must be made to determine the molar mass of the unknown solid by this method.

(ii) Show the setup(s) for the calculation(s) that must be performed to determine the molar mass of the unknown solid from the experimental data.

(iii) Explain how the difference(s) between the two graphs in part (a) can be used to obtain information needed to calculate the molar mass of the unknown solid.
(c) Suppose that during the experiment a significant but unknown amount of solvent evaporates from the test tube. What effect would this have on the calculated value of the molar mass of the solid (i.e., too large, too small, or no effect)? Justify your answer.

(d) Show the setup for the calculation of the percentage error in a student's result if the student obtains a value of 126 g mol\(^{-1}\) for the molar mass of the solid when the actual value is 120 g mol\(^{-1}\).

\[
\begin{align*}
(\text{b)} & \quad \text{mass in g of unknown solid} \\
& \quad \text{mass in kg of solvent} \\
& \quad \text{freezing point for pure solvent} \\
& \quad \text{freezing point for solution}
\end{align*}
\]

\[
\begin{align*}
(\text{c}) & \quad \Delta T_F = (T_F \text{ solvent} - T_F \text{ solution}) \\
& \quad \text{mol unknown} = \frac{\Delta T_F}{\text{kg solvent}} \\
& \quad \text{molar mass} = \frac{g \text{ unknown}}{\text{mol unknown}}
\end{align*}
\]

(\text{ciii}) the horizontal part of the line is the freezing point

\[
\begin{align*}
(\text{cii}) & \quad \text{the horizontal part of the line is the freezing point} \\
& \quad \text{they can be used to find } \Delta T_F
\end{align*}
\]

(\text{c}) too small because kg solvent too big \(
\text{mol unknown too big} \rightarrow
\text{molar mass too small}
\)

(\text{d}) \quad \frac{6}{120} \times 100\% = \text{Percent Error}

GO ON TO THE NEXT PAGE.
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. The molar mass of an unknown solid, which is nonvolatile and a nonelectrolyte, is to be determined by the freezing-point depression method. The pure solvent used in the experiment freezes at 10°C and has a known molal freezing-point depression constant, \(K_f \). Assume that the following materials are also available.

- test tubes
- stirrer
- beaker
- stopwatch
- pipet
- graph paper
- thermometer
- hot-water bath
- balance
- ice

(a) Using the two sets of axes provided below, sketch cooling curves for (i) the pure solvent and for (ii) the solution as each is cooled from 20°C to 0.0°C.

(b) Information from these graphs may be used to determine the molar mass of the unknown solid.

(i) Describe the measurements that must be made to determine the molar mass of the unknown solid by this method.

(ii) Show the setup(s) for the calculation(s) that must be performed to determine the molar mass of the unknown solid from the experimental data.

(iii) Explain how the difference(s) between the two graphs in part (a) can be used to obtain information needed to calculate the molar mass of the unknown solid.
(c) Suppose that during the experiment a significant but unknown amount of solvent evaporates from the test tube. What effect would this have on the calculated value of the molar mass of the solid (i.e., too large, too small, or no effect)? Justify your answer.

(d) Show the setup for the calculation of the percentage error in a student's result if the student obtains a value of 126 g mol⁻¹ for the molar mass of the solid when the actual value is 120. g mol⁻¹.

\[\text{mass of solute and solvent} \]
\[\text{Temp. of freezing point of solution} \]

\[\Delta T_f = K_f \cdot m \]
\[\Delta T_f = K_f \cdot \frac{\text{mol solute}}{\text{kg solvent}} \]
\[\text{mol solute} = \frac{\Delta T_f \cdot \text{kg solvent}}{K_f} \]
\[\text{Molar mass solute} = \frac{\text{mass of solute} (g)}{\text{mol solute}} \]

(iii) You can use the graph to find \(\Delta T_f \) which is \(\text{F.P. pure solvent} - \text{F.P. solution} \)

(c) From above \[\text{mol solute} = \frac{\Delta T_f \cdot \text{kg solvent}}{K_f} \]

If mass of solvent decreases → moles of solute decrease \[\text{MM} = \frac{\text{mass solute}}{\text{mol solute}} \]

and molar mass of solute would increase, but since no adjustment was made, our answer does not increase and therefore is too small.

(d) \[\frac{2.60 \text{ g/mol} - 120.9 \text{ g/mol}}{120.9 \text{ g/mol}} \times 100\% = \text{percentage error} \]
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. The molar mass of an unknown solid, which is nonvolatile and a nonelectrolyte, is to be determined by the freezing-point depression method. The pure solvent used in the experiment freezes at 10°C and has a known molal freezing-point depression constant, K_f. Assume that the following materials are also available.

- test tubes
- stirrer
- pipet
- thermometer
- balance
- beaker
- stopwatch
- graph paper
- hot-water bath
- ice

(a) Using the two sets of axes provided below, sketch cooling curves for (i) the pure solvent and for (ii) the solution as each is cooled from 20°C to 0.0°C.

(b) Information from these graphs may be used to determine the molar mass of the unknown solid.

(i) Describe the measurements that must be made to determine the molar mass of the unknown solid by this method.

(ii) Show the setup(s) for the calculation(s) that must be performed to determine the molar mass of the unknown solid from the experimental data.

(iii) Explain how the difference(s) between the two graphs in part (a) can be used to obtain information needed to calculate the molar mass of the unknown solid.
(c) Suppose that during the experiment a significant but unknown amount of solvent evaporates from the test tube. What effect would this have on the calculated value of the molar mass of the solid (i.e., too large, too small, or no effect)? Justify your answer.

(d) Show the setup for the calculation of the percentage error in a student's result if the student obtains a value of 126 g mol⁻¹ for the molar mass of the solid when the actual value is 120 g mol⁻¹.

b) i) The measurements needed are the freezing points of the pure solvent and of the solution. Also you need the mass of the solvent (in kg) and the solute (in g).

ii) ΔT = \(i \ \text{Kf} \ \text{m} \)

From this equation, we can find the molality since that is the only unknown.

\[m = \frac{\text{mol solute}}{\text{kg solvent}} \]

Since we know the molality and the kg of solvent, we can find the moles of the solute. Since we measured the mass of the solute, we can use \(MW = \frac{g}{mol} \) to find the molecular weight of the unknown solid.

iii) The differences in the Δ graphs can be used to find the change in temperature of the freezing point (ΔTf).

(c) It would be too small because the molality would increase since the kg of solvent (in the denominator) would decrease. K is always negative, so the

d) \(\frac{120 \text{ g mol}^{-1}}{126 \text{ g mol}^{-1}} \times 100\% \)