These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.
3. Answer the following questions about BeC$_2$O$_4(s)$ and its hydrate.

(a) Calculate the mass percent of carbon in the hydrated form of the solid that has the formula BeC$_2$O$_4 \cdot 3$ H$_2$O.

(b) When heated to 220.°C, BeC$_2$O$_4 \cdot 3$ H$_2$O(s) dehydrates completely as represented below.

\[
\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}(s) \rightarrow \text{BeC}_2\text{O}_4(s) + 3 \text{H}_2\text{O}(g)
\]

If 3.21 g of BeC$_2$O$_4 \cdot 3$ H$_2$O(s) is heated to 220.°C, calculate

(i) the mass of BeC$_2$O$_4(s)$ formed, and,

(ii) the volume of H$_2$O(g) released, measured at 220.°C and 735 mm Hg.

(c) A 0.345 g sample of anhydrous BeC$_2$O$_4$, which contains an inert impurity, was dissolved in sufficient water to produce 100. mL of solution. A 20.0 mL portion of the solution was titrated with KMnO$_4(aq)$. The balanced equation for the reaction that occurred is as follows.

\[
16 \text{H}^+(aq) + 2 \text{MnO}_4^-(aq) + 5 \text{C}_2\text{O}_4^{2-}(aq) \rightarrow 2 \text{Mn}^{2+}(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l).
\]

The volume of 0.0150 M KMnO$_4(aq)$ required to reach the equivalence point was 17.80 mL.

(i) Identify the reducing agent in the titration reaction.

(ii) For the titration at the equivalence point, calculate the number of moles of each of the following that reacted.

• MnO$_4^-(aq)$
• C$_2$O$_4^{2-}(aq)$

(iii) Calculate the total number of moles of C$_2$O$_4^{2-}(aq)$ that were present in the 100. mL of prepared solution.

(iv) Calculate the mass percent of BeC$_2$O$_4(s)$ in the impure 0.345 g sample.
c) 0.545 g Bec$_3$O$_4$ in impurity

10.0 mL soln.

20.0 mL soln. = 17.80 mL 0.0150 M KMnO$_4$

i) C$_2$O$_4^{2−}$ is the reducing agent.

ii) 17.80 mL × 0.0150 M = 0.267 mmol MnO$_4^{−}$ = \(2.67 \times 10^{-4}\) mol MnO$_4^{−}$

\[
\frac{5\text{mol C}_2\text{O}_4^{2−}}{2\text{mol MnO}_4^{−}} = \frac{2.67 \times 10^{-4}\text{ mol MnO}_4^{−}}{0.18 \times 10^{-4}\text{ mol C}_2\text{O}_4^{2−}}
\]

iii) \(\frac{0.18 \text{ mol C}_2\text{O}_4^{2−}}{20.0 \text{ mL soln}} \times \frac{\text{mol C}_2\text{O}_4^{2−}}{100. \text{ mL soln}} = 3.34 \times 10^{-3} \text{ mol C}_2\text{O}_4^{2−}\)

iv) \(\text{Mass C}_2\text{O}_4 = 3.34 \times 10^{-3}\text{ mol C}_2\text{O}_4^{2−} \times \frac{93.08 \text{ g Bec}_3\text{O}_4}{\text{mol C}_2\text{O}_4^{2−}}\)

\[
= 0.324 \text{ g Bec}_3\text{O}_4
\]

\[
\text{% Bec}_3\text{O}_4 = \frac{0.324 \text{ g}}{100} \times 100 = 93.97
\]

STOP

If you finish before time is called, you may check your work on this part only. Do not turn to the other part of the test until you are told to do so.
3. Answer the following questions about $\text{BeC}_2\text{O}_4(s)$ and its hydrate.

(a) Calculate the mass percent of carbon in the hydrated form of the solid that has the formula $\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}$

(b) When heated to 220°C, $\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}(s)$ dehydrates completely as represented below.

$$\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}(s) \rightarrow \text{BeC}_2\text{O}_4(s) + 3 \text{H}_2\text{O}(g)$$

If 3.21 g of $\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}(s)$ is heated to 220°C, calculate

(i) the mass of $\text{BeC}_2\text{O}_4(s)$ formed, and,

(ii) the volume of the $\text{H}_2\text{O}(g)$ released, measured at 220°C and 735 mm Hg.

(c) A 0.345 g sample of anhydrous BeC_2O_4, which contains an inert impurity, was dissolved in sufficient water to produce 100. mL of solution. A 20.0 mL portion of the solution was titrated with $\text{KMnO}_4(aq)$. The balanced equation for the reaction that occurred is as follows:

$$16 \text{H}^+(aq) + 2 \text{MnO}_4^-(aq) + 5 \text{C}_2\text{O}_4^{2-}(aq) \rightarrow 2 \text{Mn}^{2+}(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l).$$

The volume of 0.0150 M $\text{KMnO}_4(aq)$ required to reach the equivalence point was 17.80 mL.

(i) Identify the reducing agent in the titration reaction.

(ii) For the titration at the equivalence point, calculate the number of moles of each of the following that reacted.

- $\text{MnO}_4^-(aq)$
- $\text{C}_2\text{O}_4^{2-}(aq)$

(iii) Calculate the total number of moles of $\text{C}_2\text{O}_4^{2-}(aq)$ that were present in the 100. mL of prepared solution.

(iv) Calculate the mass percent of $\text{BeC}_2\text{O}_4(s)$ in the impure 0.345 g sample.
C\textsubscript{2}O\textsubscript{4} was the red agent ble the oxidation state of carbon went from +3 to +4.

(ii) \((0.0178 \text{ L}) (0.150 \text{ M}) = 0.00267 \text{ mol} \text{ CO}_4^- \text{ mol}^{-2} \)

\[0.00267 \text{ mol}^{\text{CO}_4^-} \times 2 \text{ mol} \text{ CO}_4^- = 0.000668 \text{ mol} \text{ CO}_4^2^- \]

(iii) \(\frac{1 \text{ mol} \text{ CO}_4^-}{1.078 \text{ g}} = 0.356 \text{ mol} \text{ CO}_4^- \text{ CO}_2 \)

\[0.356 \text{ mol} \text{ CO}_4^- \times 2 \text{ mol} \text{ CO}_4^- = 0.68 \text{ mol} \text{ CO}_4^2^- \]

(iv) \(0.000668 - 0.356 = 0.059 \text{ impurities} \) \(\times 100 \)

\[\frac{0.059 \text{ mol}}{0.000668 \text{ mol}} = 78\% \text{ impurities} \]

STOP

If you finish before time is called, you may check your work on this part only.
Do not turn to the other part of the test until you are told to do so.
3. Answer the following questions about BeC\textsubscript{2}O\textsubscript{4}(s) and its hydrate.

(a) Calculate the mass percent of carbon in the hydrated form of the solid that has the formula BeC\textsubscript{2}O\textsubscript{4} \cdot 3 H\textsubscript{2}O

(b) When heated to 220°C, BeC\textsubscript{2}O\textsubscript{4} \cdot 3 H\textsubscript{2}O(s) dehydrates completely as represented below.

\[
\text{BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}(s) \rightarrow \text{BeC}_2\text{O}_4(s) + 3 \text{H}_2\text{O}(g)
\]

If 3.21 g of BeC\textsubscript{2}O\textsubscript{4} \cdot 3 H\textsubscript{2}O(s) is heated to 220°C, calculate

(i) the mass of BeC\textsubscript{2}O\textsubscript{4}(s) formed, and,

(ii) the volume of the H\textsubscript{2}O(g) released, measured at 220°C and 735 mm Hg.

(c) A 0.345 g sample of anhydrous BeC\textsubscript{2}O\textsubscript{4}, which contains an inert impurity, was dissolved in sufficient water to produce 100. mL of solution. A 20.0 mL portion of the solution was titrated with KMnO\textsubscript{4}(aq). The balanced equation for the reaction that occurred is as follows.

\[
16 \text{H}^+(aq) + 2 \text{MnO}_4^{-}(aq) + 5 \text{C}_2\text{O}_4^{2-}(aq) \rightarrow 2 \text{Mn}^{2+}(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l).
\]

The volume of 0.0150 M KMnO\textsubscript{4}(aq) required to reach the equivalence point was 17.80 mL.

(i) Identify the reducing agent in the titration reaction.

(ii) For the titration at the equivalence point, calculate the number of moles of each of the following that reacted.

- MnO\textsubscript{4}^{-}(aq)
- C\textsubscript{2}O\textsubscript{4}^{2-}(aq)

(iii) Calculate the total number of moles of C\textsubscript{2}O\textsubscript{4}^{2-}(aq) that were present in the 100. mL of prepared solution.

(iv) Calculate the mass percent of BeC\textsubscript{2}O\textsubscript{4}(s) in the impure 0.345 g sample.

\[
\text{a) } \% \text{ mass C in BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O} :\]

\[
\frac{24 \text{ g C}}{151 \text{ g BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}} \times 100 = 16 \% \text{ C}
\]

\[
\text{b) (i) mass of BeC}_2\text{O}_4(s) \text{ formed}
\]

\[
\frac{3.21 \text{ g BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}}{1 \text{ mol}} \times \frac{1 \text{ mol BeC}_2\text{O}_4 \cdot 1 \text{ g BeC}_2\text{O}_4}{151 \text{ g BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}} = 0.191 \text{ g BeC}_2\text{O}_4(s) \text{ formed}
\]

\[
\text{(ii) volume H}_2\text{O(g) released}
\]

\[
\frac{3.21 \text{ g BeC}_2\text{O}_4 \cdot 3 \text{H}_2\text{O}}{1 \text{ mol}} \times \frac{3 \text{ mol H}_2\text{O}}{1 \text{ mol}} \times \frac{22.4 \text{ L}}{1 \text{ mol H}_2\text{O}} = 1.42 \text{ L H}_2\text{O(g)}
\]
c) \[16 \text{H}^+ + 2 \text{MnO}_4^- + 5 \text{C}_2\text{O}_4^{2-} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2\text{O} \]

\[
\text{MnO}_4^- \quad \text{Mn}^{2+} \\
0.0150 \text{M} \quad \text{1000 ml} \\
17.8 \text{ml} @\text{eq. pt.} \\
\]

(i) Identify reducing agent \(\rightarrow\) oxidized

\[2 \text{MnO}_4^- \rightarrow 2 \text{Mn}^{2+} + 4\text{H}_2\text{O} + \text{e}^- \]

\text{MnO}_4^- \text{is the reducing agent, because it causes the substance to be oxidized.}

(ii) Number of moles at eq. pt.?

- \text{MnO}_4^- (aq)
 \[\frac{17.8 \text{ml MnO}_4^-}{22.4 \text{l}} = \frac{0.794 \text{ mol MnO}_4^-}{1000 \text{ ml}} \]

- \text{C}_2\text{O}_4^{2-}

\[0.345 \text{g BeC}_2\text{O}_4 \quad \frac{1 \text{mol}}{97 \text{g BeC}_2\text{O}_4} \quad \frac{1 \text{mol C}_2\text{O}_4^{2-}}{1 \text{mol} \text{BeC}_2\text{O}_4} \quad 0.00356 \text{ mol C}_2\text{O}_4^{2-} \]

(iv) \(0.0 \text{BeC}_2\text{O}_4\)