AP Chemistry
2000 Student Samples

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.
2. Answer the following questions that relate to electrochemical reactions.

(a) Under standard conditions at 25°C, Zn(s) reacts with Co^{2+}(aq) to produce Co(s).

(i) Write the balanced equation for the oxidation half reaction.

(ii) Write the balanced net-ionic equation for the overall reaction.

(iii) Calculate the standard potential, \(E^\circ \), for the overall reaction at 25°C.

(b) At 25°C, \(\text{H}_2\text{O}_2 \) decomposes according to the following equation.

\[
2 \text{H}_2\text{O}_2(aq) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g) \quad E^\circ = 0.55 \text{ V}
\]

(i) Determine the value of the standard free energy change, \(\Delta G^\circ \), for the reaction at 25°C.

(ii) Determine the value of the equilibrium constant, \(K_eq \), for the reaction at 25°C.

(iii) The standard reduction potential, \(E^\circ \), for the half reaction \(\text{O}_2(g) + 4 \text{H}^+(aq) + 4 \text{e}^- \rightarrow 2 \text{H}_2\text{O}(l) \) has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, \(E^\circ \), for the half reaction below.

\[
\text{O}_2(g) + 2 \text{H}^+(aq) + 2 \text{e}^- \rightarrow \text{H}_2\text{O}_2(aq)
\]

(c) In an electrolytic cell, Cu(s) is produced by the electrolysis of \(\text{CuSO}_4(aq) \). Calculate the maximum mass of Cu(s) that can be deposited by a direct current of 100. amperes passed through 5.00 L of 2.00 \(M \) \(\text{CuSO}_4(aq) \) for a period of 1.00 hour.
B. \[2 \text{H}_2\text{O}_2 \rightarrow 2 \text{H}_2\text{O} + \text{O}_2 \] \(\varepsilon^o = 0.55 \text{ V} \)

i. \(\Delta G = -n \gamma \varepsilon^o \)
\[= - (2 \text{ mol e}^-)(96485 \text{ mol e}^- \text{ V}) \]
\[= -106150 \text{ J} \]
\(\Delta G = -110 \text{ KJ} \)

ii. \(\Delta G = -RT \ln K \)
\[K_{eq} = e^{\frac{-
\[= e^{\frac{-106150}{8.315 \times 1 \times 298.15}} \]
\[K_{eq} = 4.03 \times 10^{18} \]

iii. \[\text{O}_2 + 4 \text{H}^+ + 4 \text{e}^- \rightarrow \text{H}_2\text{O} \] \(\varepsilon^o = 1.23 \text{ V} \)

\[\text{H}_2\text{O} + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}_2 \] \(\varepsilon^o = -0.55 \text{ V} \)

\[\text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{H}_2\text{O}_2 \]

\[2 \text{O}_2 + 4 \text{H}^+ + 4 \text{e}^- \rightarrow 2 \text{H}_2\text{O}_2 \]

\[\varepsilon^o_{\text{rxn}} = 1.23 \text{ V} + (-0.55 \text{ V}) \]
\[\varepsilon^o_{\text{rxn}} = 0.68 \text{ V} \]

C. \[\text{Cu}^{2+} + 2 \text{e}^- \rightarrow \text{Cu}^{0} \]
\[2.00 \text{ mol} \]
\[\frac{\text{Cu}^{2+}}{\text{L}}(5.00 \text{ L}) = 10.0 \text{ mol} \text{Cu}^{2+} \]
\[A = \frac{\text{Cu}^{2+}}{\text{sec}} \]

\[g \text{ Cu} = 63.55 \text{ g Cu} \]
\[1 \text{ mol Cu} \]
\[1 \text{ mol e}^- \]
\[100 \text{ C} \]
\[60 \text{ sec} \]
\[1.00 \text{ hr} \]
\[1 \text{ min} \]
\[1 \text{ hr} \]

\[= 119 \text{ g Cu} \]

GO ON TO THE NEXT PAGE.
2. Answer the following questions that relate to electrochemical reactions.

(a) Under standard conditions at 25°C, \(\text{Zn}(s) \) reacts with \(\text{Co}^{2+}(aq) \) to produce \(\text{Co}(s) \).

(i) Write the balanced equation for the oxidation half reaction.

(ii) Write the balanced net-ionic equation for the overall reaction.

(iii) Calculate the standard potential, \(E^\circ \), for the overall reaction at 25°C.

(b) At 25°C, \(\text{H}_2\text{O}_2 \) decomposes according to the following equation.

\[
2 \text{H}_2\text{O}_2(aq) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g) \quad E^\circ = 0.55 \text{ V}
\]

(i) Determine the value of the standard free energy change, \(\Delta G^\circ \), for the reaction at 25°C.

(ii) Determine the value of the equilibrium constant, \(K_{eq} \), for the reaction at 25°C.

(iii) The standard reduction potential, \(E^\circ \), for the half reaction \(\text{O}_2(g) + 4 \text{H}^+(aq) + 4 e^- \rightarrow 2 \text{H}_2\text{O}(l) \) has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, \(E^\circ \), for the half reaction below.

\[
\text{O}_2(g) + 2 \text{H}^+(aq) + 2 e^- \rightarrow \text{H}_2\text{O}_2(aq)
\]

(c) In an electrolytic cell, \(\text{Cu}(s) \) is produced by the electrolysis of \(\text{CuSO}_4(aq) \). Calculate the maximum mass of \(\text{Cu}(s) \) that can be deposited by a direct current of 100 amperes passed through 5.00 L of 2.00 M \(\text{CuSO}_4(aq) \) for a period of 1.00 hour.

\begin{align*}
3) & \; 1) \quad \text{Zn} \rightarrow \text{Zn}^{2+} + 2e^- \\
& \; ii) \quad \text{Zn} + \text{Co}^{2+} \rightarrow \text{Zn}^{2+} + \text{Co} \\
& \; iii) \quad E^\circ_{\text{Zn}} = 0.76 \\
& \quad E^\circ_{\text{red Co}} = -0.28 \\
& \quad E^\circ = 0.76 + (-0.28) = 0.48 \text{ V} \\
2) & \; 1) \quad \Delta G^\circ = -nFE^\circ \\
& \quad \Delta G^\circ = -(1)(96500)(0.55) \\
& \quad = -53075 \\
& \; ii) \quad \Delta G^\circ = -230.3 k \text{cal} \\
& \quad -53075 = -2303 \left(5.31 \right) \log \text{k} \\
& \quad \log \text{k} = 9.306 \\
& \quad k = 2.02 \times 10^9
\end{align*}

GO ON TO THE NEXT PAGE.
\[E^\circ = 1.23 + (-0.55) = 0.68 \text{ V} \]

c) \[\frac{Mx}{V} = \frac{63.55}{96.50} \]

\[2.00 \text{ mol} \]

\[\frac{mol}{S} \]

\[10 \text{ mol} + 20e^- \]

GO ON TO THE NEXT PAGE.
Answer EITHER Question 2 below OR Question 3 printed on page 12. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 20 percent.

2. Answer the following questions that relate to electrochemical reactions.

(a) Under standard conditions at 25°C, Zn(s) reacts with Co^{2+}(aq) to produce Co(s).
 (i) Write the balanced equation for the oxidation half reaction.
 (ii) Write the balanced net-ionic equation for the overall reaction.
 (iii) Calculate the standard potential, E°, for the overall reaction at 25°C.

(b) At 25°C, H_2O_2 decomposes according to the following equation.
 \[2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g) \quad E^\circ = 0.55 \text{ V} \]
 (i) Determine the value of the standard free energy change, ΔG°, for the reaction at 25°C.
 (ii) Determine the value of the equilibrium constant, K_{eq}, for the reaction at 25°C.
 (iii) The standard reduction potential, E°, for the half reaction $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$ has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, E°, for the half reaction below.
 \[O_2(g) + 2H^+(aq) + 2e^- \rightarrow H_2O_2(aq) \]

(c) In an electrolytic cell, Cu(s) is produced by the electrolysis of CuSO$_4$(aq). Calculate the maximum mass of Cu(s) that can be deposited by a direct current of 100. amperes passed through 5.00 L of 2.00 M CuSO$_4$(aq) for a period of 1.00 hour.
b.) i.) \(\Delta G = -n FE^o \)
\(= -2 (96,500 \text{ C/mol})(0.55 \text{ V}) \)
\(\Delta G = -1.06 \times 10^5 \)

ii.) \(K_{eq} = \frac{[H_2O]^2 [O_2]}{[H_2O_2]^2} \)

iii.) \(O_2 + 2H^+ + 2e^- \rightarrow H_2O_2 \)
\(E^o = \frac{1}{2} (1.23) = 0.615 \text{ V} \)

C.)