AP Calculus BC
1999 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
4. The function f has derivatives of all orders for all real numbers x. Assume $f(2) = -3$, $f'(2) = 5$, $f''(2) = 3$, and $f'''(2) = -8$.

(a) Write the third-degree Taylor polynomial for f about $x = 2$ and use it to approximate $f(1.5)$.

$$T_3(x) = -3 + 5(x-2) + \frac{3}{2} (x-2)^2 - \frac{4}{3} (x-2)^3$$

$$f(1.5) \approx -3 + 5(1.5-2) + \frac{3}{2} (1.5-2)^2 - \frac{4}{3} (1.5-2)^3$$

$$= -4.958$$

(b) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \leq 3$ for all x in the closed interval $[1.5, 2]$. Use the Lagrange error bound on the approximation to $f(1.5)$ found in part (a) to explain why $f(1.5) \neq -5$.

$$R_3(1.5) = \frac{f^{(4)}(z)}{4!} (1.5-2)^4 \quad \text{for some } 1.5 \leq z \leq 2.$$

Thus,

$$R_3(1.5) \leq \frac{3}{4!} (1.5-2)^4 = 0.0078125$$

Thus,

$$-4.958 - 0.0078125 \leq f(1.5) \leq -4.958 + 0.0078125$$

$$-4.966 \leq f(1.5) \leq -4.950$$

Thus, $f(1.5) \neq -5$.

Continue problem 4 on page 11.
(c) Write the fourth-degree Taylor polynomial, \(P(x)\), for \(g(x) = f(x^2 + 2)\) about \(x = 0\). Use \(P\) to explain why \(g\) must have a relative minimum at \(x = 0\).

\[P(x) = -3 + 5x^2 + \frac{3}{2}x^4 \]

Since the coefficient of \(x\) is 0, \(\frac{g'(0)}{1!} = 0\), so \(g'(0) = 0\).
Since the coefficient of \(x^2\) is 5, \(\frac{g''(0)}{2!} = 5\), so \(g''(0) = 10\).

Thus, since \(g''(0)\) is positive and \(g'(0) = 0\), \(P(x)\) must have a relative minimum at \(x = 0\) by the second derivative test.
4. The function \(f \) has derivatives of all orders for all real numbers \(x \). Assume \(f(2) = -3 \), \(f'(2) = 5 \), \(f''(2) = 3 \), and \(f'''(2) = -8 \).

(a) Write the third-degree Taylor polynomial for \(f \) about \(x = 2 \) and use it to approximate \(f(1.5) \).

\[
f(x) = f(2) + f'(2)(x - 2) + \frac{f''(2)}{2!}(x - 2)^2 + \frac{f'''(2)}{3!}(x - 2)^3
\]

\[
= -3 + 5(x - 2) + \frac{3}{2}(x - 2)^2 - \frac{3}{3}(x - 2)^3
\]

\[
f(1.5) = -4.958
\]

(b) The fourth derivative of \(f \) satisfies the inequality \(|f^{(4)}(x)| \leq 3 \) for all \(x \) in the closed interval \([1.5, 2]\). Use the Lagrange error bound on the approximation to \(f(1.5) \) found in part (a) to explain why \(f(1.5) \neq -5 \).

\[
|\text{error}| \leq a_{n+1}
\]

\[
|\text{error}| \leq a_4
\]

\[
|\text{error}| \leq \frac{3}{4!}(x - 2)^4
\]

\[
|\text{error}| \leq \frac{3}{24}(1.5 - 2)^4
\]

\[
|\text{error}| \leq .0078
\]

The truncation error is no greater than .0078

\[
-4.958 - .0078 < f(1.5) \leq -4.958 + .0078
\]

\[
-4.9658 < f(1.5) \leq -4.9502
\]

\[
\therefore f(1.5) \neq -5
\]

Continue problem 4 on page 11.
(c) Write the fourth-degree Taylor polynomial, \(P(x) \), for \(g(x) = f(x^2 + 2) \) about \(x = 0 \). Use \(P \) to explain why \(g \) must have a relative minimum at \(x = 0 \).

\[
P(x) = -3 + 5(x^2 + 2 - 2) + \frac{3}{2!} (x^2 + 2 - 2)^2
\]
\[
= -3 + 5x^2 + \frac{3}{2} x^4
\]

\[
P'(x) = 10x + 6x^3
\]
\[
0 = 2x (5 + 3x^2)
\]
\[
x = 0
\]

\[
\frac{-1}{0} + \quad P'(x) = g'(x)
\]

\[
\therefore \quad g(x) \text{ has a relative minimum at } x = 0
\]
4. The function \(f \) has derivatives of all orders for all real numbers \(x \). Assume \(f(2) = -3, f'(2) = 5, f''(2) = 3, \) and \(f'''(2) = -8 \).

(a) Write the third-degree Taylor polynomial for \(f \) about \(x = 2 \) and use it to approximate \(f(1.5) \).

\[
\begin{align*}
\frac{f(x)}{f(x)} &= -3 + 5(x-2) + \frac{3}{2!}(x-2)^2 - \frac{8}{3!}(x-2)^3 \\
\frac{f(1.5)}{f(1.5)} &= -3 + 5(1.5-2) + \frac{3}{2!}(1.5-2)^2 - \frac{8}{3!}(1.5-2)^3 \\
\frac{f(1.5)}{f(1.5)} &= -4.958
\end{align*}
\]

(b) The fourth derivative of \(f \) satisfies the inequality \(|f^{(4)}(x)| \leq 3 \) for all \(x \) in the closed interval \([1.5, 2]\). Use the Lagrange error bound on the approximation to \(f(1.5) \) found in part (a) to explain why \(f(1.5) \neq -5 \).

\[
\begin{align*}
\frac{f^3(x)}{f^3(x)} &> \frac{f^4(x)}{4!} \\
\frac{-3 \cdot 1.5^3}{3!} &> \frac{f^4(1.5)}{4!} \\
1.667 &> 0.002604(f^4)
\end{align*}
\]

Since there is an error of at least \(0.002604 \), \(f(1.5) \neq -5 \).

Continue problem 4 on page 11.
(c) Write the fourth-degree Taylor polynomial, $P(x)$, for $g(x) = f(x^2 + 2)$ about $x = 0$. Use P to explain why g must have a relative minimum at $x = 0$.

$$g(x) = f(x^2 + 2)$$

$$P(x) = -3 + 5(x^2 + 2 - 2) + \frac{3(x^2 + 2 - 2)^2}{2!}$$

$$\boxed{P(x) = -3 + 5x^2 + \frac{3x^4}{2!}}$$

$$P'(x) = 10x + \frac{12x^3}{2}$$

$$P'(x) = 10x + 6x^3$$

$$0 = 2x(5 + 3x^2)$$

$$x = 0 \text{ other 2 roots are complex}$$

$$\begin{array}{c}
0 \\
\end{array}$$

Because $P'(x)$ has a relative min at $x = 0$, so does $g(x)$.