The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
Work for problem 6(a)

\[\begin{align*}
(0,0) &= 0 \\
(0,1) &= 0 \\
(0,-1) &= 0 \\
(1,0) &= 1 \\
(1,1) &= 0 \\
(1,-1) &= 4 \\
(2,1) &= 0 \\
(-1,1) &= 0 \\
(-2,1) &= 0 \\
(-1,0) &= -1 \\
(-1,-1) &= -4
\end{align*} \]

Work for problem 6(b)

This graph passes through the points \((-1,1)\) and \((1,1)\) and has a slope whose absolute value is greater than 0. However, in the slope field, the slope at these points is 0. Therefore, this graph cannot match the differential equation.

Continue problem 6 on page 15.
Work for problem 6(c)

\[
\frac{dy}{(y-1)^2} = x \, dx
\]

Integrate:

\[
\frac{-1}{y-1} = \frac{1}{2} x^2 + C
\]

\[
\frac{-1}{-1-1} = \frac{1}{2} (0)^2 + C
\]

\[
C = \frac{1}{2}
\]

Work for problem 6(d)

When \(x = 0\), \(y = -1\)

As \(x\) approaches \(-\infty\) or \(\infty\), \(y\) goes to 1

\([-1, 1]\)

END OF EXAMINATION

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THIS SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THIS SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.
- MAKE SURE THAT YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.
Work for problem 6(a)

Work for problem 6(b)

This graph can not be a solution because at the points (-1, 1) and (1, 1) the slope of the function must be zero. In this particular graph there is a slope not equaling 0 at these two points.

Continue problem 6 on page 15.
Work for problem 6(c)

\[\frac{dy}{(y-1)^2} = \frac{x}{x^2 + 1} \, dx \]

\[u = y-1 \]

\[\int \frac{du}{u^2} = \int \frac{x}{x^2 + 1} \, dx \]

\[-\frac{1}{u} = \frac{1}{2} \ln |u| + C \]

\[\frac{1}{(y-1)^2} = \frac{1}{2} \ln |x^2 + 1| + C \]

\[-\frac{1}{y-1} = \frac{1}{2} \ln |x^2 + 1| + C \]

\[y-1 = e^{\frac{1}{2} \ln |x^2 + 1| + C} \]

\[y-1 = e^{\frac{1}{2} \ln |x^2 + 1|} e^{C} \]

\[y-1 = e^{C} \sqrt{x^2 + 1} \]

\[c = \frac{1}{2} \]

Work for problem 6(d)

\[\text{range} = -1 < y < 1 \]

END OF EXAMINATION

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THIS SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THIS SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.
- MAKE SURE THAT YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.
\[
\frac{dy}{dx} = x(y-1)^2 \rightarrow y^2x-2xy+x
\]

Parabolas such as the one shown above have 2 values of \(x \) for each unique value \(y \). However, the differential equation from above shows that there are more values for \(y \) than \(x \), so the shape should be lie sideways.

Continue problem 6 on page 15.
Work for problem 6(c)

\[f(0) = -1 \]

\[\int \frac{dy}{(y-1)^2} = \int x \, dx \rightarrow \int \frac{dy}{y^2 - 2y + 1} = \int x \, dx \]

\[\frac{1}{2}x^2 = -(y-1)^{-1} + C \]

\[\frac{1}{3}x^2 + C = -\frac{1}{y-1} \rightarrow (0, -1): \quad 0 + C = -\frac{1}{1-1} \rightarrow C = -\frac{1}{(-2)} = \frac{1}{2} \]

\[\frac{1}{2}x^2 + \frac{1}{2} = -\frac{1}{y-1} \rightarrow -\frac{1}{2}x^2 - \frac{1}{2} = \frac{1}{y-1} \rightarrow \frac{-x^2 - 1}{2} = \frac{1}{y - 1} \]

\[\frac{2}{-(x^2 - 1)} \rightarrow \frac{-2}{x^2 + 1} + 1 = y \]

\[\frac{-2 + x^2 + 1}{x^2 + 1} \Rightarrow \frac{x^2 - 1}{x^2 + 1} = y \]

Work for problem 6(d)

Range:

every value of \(y \) allowed because \(x^2 + 1 \) can never equal 0, thus \(y \) will never be \(\infty \)

END OF EXAMINATION

THE FOLLOWING INSTRUCTIONS APPLY TO THE BACK COVER OF THIS SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE BACK OF THIS SECTION II BOOKLET.

- CHECK TO SEE THAT YOUR AP NUMBER APPEARS IN THE BOX(ES) ON THE BACK COVER.

- MAKE SURE THAT YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMINATIONS YOU HAVE TAKEN THIS YEAR.