The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
Work for problem 5(a)

\[V = \frac{1}{3} \pi r^2 h \]

\[V = \frac{1}{3} \pi (2.5)^2 (5) \]

\[V = \frac{5}{3} \pi (2.5)^2 \text{ cm}^3 \]
Work for problem 5(b)

\[V = \frac{\pi}{3} \cdot r^2 \cdot h \]
\[= \frac{\pi}{3} \left(\frac{h}{2} \right)^2 \cdot h \]
\[V = \frac{\pi}{3} \cdot \frac{h^3}{4} \]

\[\frac{dV}{dt} = 3 \frac{\pi}{12} \cdot h^2 \cdot \frac{dh}{dt} \]
\[= \frac{\pi}{4} \left(\frac{5}{3} \right)^2 \left(\frac{-3}{10} \right) \]
\[= \frac{\pi}{8} \left(\frac{-15 \pi}{2} \right) \]
\[= \frac{-15 \pi}{8} \text{ cm}^3/\text{hr} \]

Work for problem 5(c)

\[s = \frac{\pi}{4} \cdot r^2 \]
\[y = \frac{h}{2} \]

\[\frac{dV}{dt} = \frac{\pi}{4} \cdot h^2 \cdot \frac{dh}{dt} \]

\[\frac{dV}{dt} \propto SA \]

\[\frac{dV}{dt} = \pi \cdot h^2 \cdot k \]

\[\frac{\pi}{4} \cdot h^2 \cdot \frac{dh}{dt} = \pi \cdot h^2 \cdot k \]

\[\frac{dh}{dt} = k \]

The constant of proportionality \[\frac{dh}{dt} \]
\[
\frac{r}{h} = \frac{5}{10} \\
5h = 10r \\
\frac{h}{2} = r
\]

Work for problem 5(a)

\[
\frac{dh}{dt} = -\frac{3}{10} \text{ cm/hr.}
\]

Find: \(V \) when \(h = 5 \text{ cm} \)

\[
\begin{align*}
V &= \frac{1}{3} \pi \left(\frac{5}{2} \right)^2 (5) \\
V &= \frac{1}{3} \pi \frac{125}{4} \\
V &= \frac{125\pi}{12} \text{ cm}^3
\end{align*}
\]
Work for problem 5(b)

\[\text{find: } \frac{dv}{dt} \text{ when } h = 5 \text{ cm} \]

\[\text{given: } \frac{dh}{dt} = -\frac{3}{10} \text{ cm/hr.} \]

\[V = \frac{1}{3} \pi \left(\frac{h}{2} \right)^2 h \]

\[\frac{dv}{dt} = \frac{1}{4} \pi \left(\frac{h}{2} \right)^2 \frac{dh}{dt} \]

\[\frac{dv}{dt} = \frac{\pi}{4} \left(\frac{5}{2} \right)^2 \left(-\frac{3}{10} \right) \]

\[\frac{dv}{dt} = -15 \pi \frac{25}{8} \text{ cm}^3/\text{hr.} \]

Work for problem 5(c)

\[\frac{dA}{dt} \quad A = \pi \left(\frac{h}{2} \right)^2 \]

\[\frac{dA}{dt} = \pi \frac{h}{2} \frac{dh}{dt} \]

\[\frac{dA}{dt} = \pi \left(\frac{5}{2} \right) \left(-\frac{3}{10} \right) \]

\[\frac{dA}{dt} = -15 \pi \frac{25}{20} \]

\[\frac{dA}{dt} = -3 \pi \text{ cm}^2/\text{hr.} \]