AP® Calculus AB
2002 Sample Student Responses

The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)

\[\int_{-5}^{1} (e^x - \ln x) \, dx = 1.223 \text{ units}^2 \]
Work for problem 1(b)

\[
\begin{align*}
R &= 4 - \ln x \\
Y &= 4 - e^x
\end{align*}
\]

\[
\int_{0.5}^{5} (4 - \ln(x))^2 - (4 - e^x)^2 \, dx = 23,609 \text{ units}^3
\]

Work for problem 1(c)

\[
\begin{align*}
\eta(x) &= f(x) - g(x) \\
&= e^x - \ln x \\
\eta'(x) &= e^x - \frac{1}{x}
\end{align*}
\]

For criticals:
\[
e^x - \frac{1}{x} = 0
\]

\[
\ln e^x = \ln x
\]

\[
x = \ln x
\]

\[
x = -\ln x
\]

\[
\ln x + x = 0
\]

\[
x = 0.567
\]

End pts: 0.5, 1

To determine the absolute minimum and maximum, I found any criticals (when \(\eta'(x) \) equals 0), and the end points. There was only one critical number, which occurred at \(x = 0.567 \). When I compared the values of each number (see chart), I found the minimum value to be 2.330 and the absolute maximum value to be 2.718 (or e).

GO ON TO THE NEXT PAGE.
CALCULUS AB
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)

\[A = \int_{\frac{1}{2}}^{u} e^x - \ln x \, dx = \begin{bmatrix} 1.223 \end{bmatrix} \, u^2 \]
\[(\text{using fnInt})\]
Work for problem 1(b)

\[V = \pi \int_{\frac{1}{2}}^{1} (y - \ln x)^2 - (4 - e^x)^2 \, dx = \left[\frac{23.610}{3} \right] \text{ cu. units} \]

(using data)

Work for problem 1(c)

\[h'(x) = f'(x) - g'(x) \]
\[h'(x) = e^x - \frac{1}{x} = 0 \]

\[h(1) = e - \ln 1 = \text{MAX} \]
\[e^x \text{ grows faster than } \ln x \text{ so on the interval } \frac{1}{2} \leq x \leq 1, \]

the greatest value of \(h(x) \) will be at \(x = 1 \).

\[h\left(\frac{1}{2}\right) = \left[e^{\frac{1}{2}} - \ln \frac{1}{2} \right] = \text{MIN} \]

since \(e^x \) grows faster than \(\ln x \) the min. value will

be at the very beginning of the interval at \(x = \frac{1}{2} \).