AP Calculus AB
1999 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
2. The shaded region, R, is bounded by the graph of $y = x^2$ and the line $y = 4$, as shown in the figure above.

(a) Find the area of R.

$$\int_{-2}^{2} (4 - x^2) \, dx = \frac{32}{3}$$

(b) Find the volume of the solid generated by revolving R about the x-axis.

$$\frac{\pi}{11} \int_{-2}^{2} (4^2 - x^4) \, dx = \pi \left[16 x - \frac{1}{5} x^5 \right]_{-2}^{2} = 51.2$$
(c) There exists a number k, $k > 4$, such that when R is revolved about the line $y = k$, the resulting solid has the same volume as the solid in part (b). Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

$$\pi \int_{-2}^{2} \left((k-x^2)^2 - (k-4)^2 \right) dx = 5\pi$$
2. The shaded region, \(R \), is bounded by the graph of \(y = x^2 \) and the line \(y = 4 \), as shown in the figure above.

(a) Find the area of \(R \).

\[
A = \int_{0}^{2} (4 - x^2) \, dx = 2 \int_{0}^{2} (4 - x^4) \, dx = 2 \left[4x - \frac{x^5}{3} \right]_0^2 \\
A = 2 \left(4(2) - \frac{1}{3}(2)^5 \right) = 2 \left(8 - \frac{32}{3} \right) = \frac{32}{3}
\]

\[A_R = \frac{32}{3}\]

(b) Find the volume of the solid generated by revolving \(R \) about the \(x \)-axis.

\[
V = \pi \int_{0}^{2} (4^2 - (x^2)^2) \, dx = 2\pi \int_{0}^{2} (16 - x^4) \, dx = 2\pi \left[16x - \frac{x^5}{5} \right]_0^2 \\
V = 2\pi \left[16(2) - \frac{1}{5}(2)^5 \right] = 2\pi \left(32 - \frac{32}{5} \right) = \frac{256\pi}{5}
\]

\[V = \frac{256\pi}{5} = 160.850\]
(c) There exists a number k, $k > 4$, such that when R is revolved about the line $y = k$, the resulting solid has the same volume as the solid in part (b). Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

$$V = \pi \int_{-2}^{2} \left((k - 4)^2 - (k - x)^2 \right) dx$$
2. The shaded region, R, is bounded by the graph of $y = x^2$ and the line $y = 4$, as shown in the figure above.

(a) Find the area of R.

\[
\int_{-2}^{2} (x^2 - 4) \, dx = \left[\frac{x^3}{3} - 4x \right]_{-2}^{2} + \left[\frac{x^3}{3} - 4x \right]_{0}^{2} = \frac{32}{3}
\]

(b) Find the volume of the solid generated by revolving R about the x-axis.

\[
V = \pi \int_{-2}^{2} (x^2 - 4)^2 \, dx = \pi \int_{0}^{2} x^4 - 16 \, dx
\]

\[
V = \pi \left[\frac{x^5}{5} - 16x \right]_{0}^{2} = 59.733\pi
\]

Continue problem 2 on page 7.
(c) There exists a number \(k, k > 4 \), such that when \(R \) is revolved about the line \(y = k \), the resulting solid has the same volume as the solid in part (b). Write, but do not solve, an equation involving an integral expression that can be used to find the value of \(k \).

\[
59.733\pi = \pi \int_{-2}^{2} (x^2 - k)^2 \, dx
\]