AP Calculus AB
1999 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
CALCULUS AB
SECTION II
Time — 1 hour and 30 minutes
Number of problems — 6
Percent of total grade — 50

REMEMBER TO SHOW YOUR SETUPS AS DESCRIBED IN THE GENERAL INSTRUCTIONS.

1. A particle moves along the y-axis with velocity given by \(v(t) = t \sin(t^2) \) for \(t \geq 0 \).
 (a) In which direction (up or down) is the particle moving at time \(t = 1.5 \)? Why?
 \[v(1.5) = 1.5 \sin(1.5^2) = 1.167 \]
 The particle moves up when velocity is positive
 and down when velocity is negative. Since
 velocity is positive at \(t = 1.5 \), the particle
 is moving up.

(b) Find the acceleration of the particle at time \(t = 1.5 \). Is the velocity of the particle increasing at \(t = 1.5 \)?
 Why or why not?
 \[a(t) = v'(t) = 1 \cdot 2t \cos(1.5^2) + 2 \cdot 1.5 \sin(1.5^2) \]
 \[a(1.5) = 2(1.5)^2 \cos(1.5^2) + 2 \cdot 1.5 \sin(1.5^2) = -2.049 \]
 The acceleration at \(t = 1.5 \) is \(-2.049 \text{ units/s}^2 \).
 Since the acceleration at \(t = 1.5 \) is negative,
 this means that the velocity at \(t = 1.5 \) is not
 increasing but decreasing.

Continue problem 1 on page 5.
(c) Given that \(y(t) \) is the position of the particle at time \(t \) and that \(y(0) = 3 \), find \(y(2) \).

\[
y(t) = \int v(t) \, dt = \int +\sin(t^2) \, dt
\]

\[
y(t) = -\frac{1}{2} \cos(t^2) + C
\]

\[
y(0) = 3 = -\frac{1}{2} \cos(0) + C
\]

\[
\frac{3}{2} = C
\]

\[
y(t) = -\frac{1}{2} \cos(t^2) + \frac{3}{2}
\]

\[
y(2) = -\frac{1}{2} \cos(4) + \frac{3}{2} = 3.827 \text{ units}
\]

(d) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 2 \).

\[
v(t) = +\sin(t^2) = 0
\]

\[
y(t) = \int v(t) \, dt = \int 0 \, dt
\]

\[
y(t) = 0
\]

\[
0^2 = 0 \rightarrow 0
\]

\[
0 = 0 \rightarrow 0
\]

\[
0 = \int_0^2 (+\sin(t^2)) \, dt = \int_0^2 (+\sin(t^2)) \, dt
\]

\[
= \left[-\frac{1}{2} \cos(t^2) \right]_0^2 - \left[-\frac{1}{2} \cos(t^2) \right]_0^2
\]

\[
= (\frac{1}{2} \cos(4) + \frac{1}{2} \cos(0)) - (\frac{1}{2} \cos(4) + \frac{1}{2} \cos(0))
\]

\[
\text{total distance} = 1.173 \text{ units}
\]
CALCULUS AB
SECTION II
Time—1 hour and 30 minutes
Number of problems—6
Percent of total grade—50

REMEMBER TO SHOW YOUR SETUPS AS DESCRIBED IN THE GENERAL INSTRUCTIONS.

1. A particle moves along the y-axis with velocity given by \(v(t) = t \sin(t^2) \) for \(t \geq 0 \).

 (a) In which direction (up or down) is the particle moving at time \(t = 1.5 \) ? Why?

 \[
 v(t) = t \sin(t^2)
 \]

 \[
 v(1.5) = 1.5 \sin(1.5^2)
 \]

 \[
 v(1.5) = 1.14
 \]

 The particle is moving up at time \(t = 1.5 \) because its velocity at that time is positive.

 (b) Find the acceleration of the particle at time \(t = 1.5 \). Is the velocity of the particle increasing at \(t = 1.5 \) ? Why or why not?

 \[
 v(t) = t \sin(t^2)
 \]

 \[
 a(t) = \sin(t^2) + 2t^2 \cos(t^2)
 \]

 \[
 a(1.5) = -1.33
 \]

 The velocity of the particle is not increasing because the acceleration is negative.

Continue problem 1 on page 5.
(c) Given that \(y(t) \) is the position of the particle at time \(t \) and that \(y(0) = 3 \), find \(y(2) \).

\[
y(t) = \int tsin(t^2) \, dt
\]

\[
y(t) = -\frac{\cos(t^2)}{2} + C
\]

\[
y(2) = \frac{-\cos(2^2)}{2} + \frac{7}{2}
\]

\[
y(2) = 3.83
\]

(d) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 2 \).

\[
\text{total distance} = \left| \int_0^2 t \sin(t^2) \, dt \right|
\]

\[
= 1.173
\]
1. A particle moves along the y-axis with velocity given by \(v(t) = t \sin(t^2) \) for \(t \geq 0 \).
 (a) In which direction (up or down) is the particle moving at time \(t = 1.5 \)? Why?

 \[
 s(t) = \int t \sin(t^2) \, dt
 \]

 \[
 = \left[\frac{-\cos(t^2)}{2t} \right] + c
 \]

 \[
 = -\cos + c
 \]

 The particle is moving up along the y-axis at time \(t = 1.5 \) because the position of the particle is positive.

(b) Find the acceleration of the particle at time \(t = 1.5 \). Is the velocity of the particle increasing at \(t = 1.5 \)? Why or why not?

 \[
 v(t) = t \sin(t^2)
 \]

 \[
 a(t) = \left(\frac{d}{dt} \sin(t^2) \right) + \sin(t^2)
 \]

 \[
 = 1.5 \left(3 \cos(2.25) \right) + \sin(2.25)
 \]

 \[
 = 1.5 \left(3 \times 0.7071 \right) + 0.7071
 \]

 \[
 = 7.778
 \]

 \[
 a = -2.049
 \]

 The velocity is decreasing at \(t = 1.5 \) because the acceleration is negative at \(t = 1.5 \).
(c) Given that \(y(t) \) is the position of the particle at time \(t \) and that \(y(0) = 3 \), find \(y(2) \).

\[
y(t) = -\frac{1}{2} \cos t^2 + c
\]

\[3 = -\frac{1}{2} \cos 0^2 + c\]

\[3 = -\frac{1}{2} + c\]

\[3 + \frac{1}{2} = c\]

\[y(t) = -\frac{1}{2} \cos t^2 + 3\frac{1}{2} - \frac{1}{2} \cos (4t) + 3\frac{1}{2}\]

\[= 3.827\]

(d) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 2 \).

\[
\int_{0}^{2} -\frac{1}{2} \cos t^2 + 3\frac{1}{2} \ dt
\]

\[= 6.769 \text{ units}\]