The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
CALCULUS AB
SECTION II, Part B
Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

WATER LEAKS OUT AT A RATE OF:

\[
\frac{dv}{dt} = -\sqrt{t+1} \text{ gallons/min.}
\]

\[
\int_{0}^{3} dv = \int_{0}^{3} -\sqrt{t+1} \, dt
\]

\[
V_{3}^{0} = \left[-\frac{2(t+1)^{3/2}}{3} \right]_{0}^{3} = \left(-\frac{2(8)}{3} - \left(-\frac{2}{3} \right) \right)
\]

\[
= -\frac{14}{3} \text{ gallons}
\]

\[
\frac{14}{3} \text{ gallons leak out}
\]

Work for problem 4(b)

rate at which volume in tank is changing:

\[
\frac{dv}{dt} = 8 - \sqrt{t+1} \text{ gallons/min.}
\]

\[
\int_{0}^{3} dv = \int_{0}^{3} (8 - \sqrt{t+1}) \, dt
\]

\[
V_{3}^{0} = \left[8t - \frac{2(t+1)^{3/2}}{3} \right]_{0}^{3}
\]

\[
= (24 - \frac{2(8)}{3}) - \left(-\frac{2}{3} \right)
\]

\[
= \frac{56}{3} + \frac{2}{3} = \frac{58}{3} \text{ gallons}
\]

initial: \[
\frac{58}{3} + 30 = \frac{148}{3} \text{ gallons}
\]

answer: \[
\frac{58}{3} \text{ gallons}
\]

continue problem 4 on page 11.
Work for problem 4(c)

\[
\frac{d}{dt} A(t) = 8 - \sqrt{t+1} \\
\int dA(t) = \int (8 - \sqrt{t+1}) \, dt \\
A(t) = 8t - \frac{2(t+1)^{3/2}}{3} + C \\
30 = 8(0) - \frac{2(0+1)^{3/2}}{3} + C \\
C = 30 + \frac{2}{3} = \frac{92}{3}
\]

Work for problem 4(d)

\[
8 - \sqrt{t+1} = 0 \\
-\sqrt{t+1} = -8 \\
\sqrt{t+1} = 8 \\
t + 1 = 64 \\
t = 63
\]

At \(t = 63 \) minutes, the amount of water is maximum because of the first derivative test.
CALCULUS AB
SECTION II, Part B
Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

Pumped = 8 gpm
Leaks = \(\sqrt{t+1} \) gpm
\(t = 0, 30 \text{ gallons} \)

\[
\int_0^3 \sqrt{t+1} \, dt = \int_0^3 (t+1)^{1/2} \, dt
\]
\[
\frac{2}{3} (t+1)^{3/2} \bigg|_0^3
\]
\[
= \frac{2}{3} (4)^{3/2} - \frac{2}{3} (1)^{3/2}
\]
\[
= \frac{2}{3} (8) - \frac{2}{3}
\]
\[
= \frac{16}{3} - \frac{2}{3}
\]
\[
= \frac{14}{3} \text{ gallons}
\]

Work for problem 4(b)

\[
\frac{8 \text{ gallons}}{1 \text{ min}} \left(\frac{3 \text{ minutes}}{} \right) = 24 \text{ gallons} - \frac{14}{3} \text{ gallons} = \frac{72}{3} - \frac{14}{3} = \frac{58}{3} \text{ gallons}
\]

Continue problem 4 on page 11.
Work for problem 4(c)

\[A(t) = 8t - \int_0^t (t+1)^{\frac{1}{2}} \, dt \]

Work for problem 4(d)

\[A'(t) = 8 - (t+1)^{\frac{1}{2}} = 0 \]

\[\left(\sqrt{t+1}\right)^2 = 8^2 \]

\[t + 1 = 64 \]

\[t = 63 \]

When \(t \) is 63, the graph \(A(t) \) reaches a maximum (goes from positive to negative). So, the amount of water is at its maximum in the tank when \(t = 63 \).
CALCULUS AB
SECTION II, Part B
Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

\[
\int_0^3 \sqrt{t^2 + 1} \, dt
\]

\[
\frac{3}{2} (t + 1)^{3/2} \bigg|_0^3
\]

\[
= \frac{3}{2} (4^{3/2} - 1^{3/2}) = \frac{3}{2} (8 - 1) = \frac{14}{3}
\]

Work for problem 4(b)

\[
54 - \frac{14}{3} = \frac{162}{3} - \frac{14}{3} = \frac{148}{3} = 49 \frac{1}{3} \text{ gallons}
\]

Continue problem 4 on page 11.
Work for problem 4(c)

\[A(t) = \left[(30 + 8t) \right] - \left[\frac{3}{2} \int t + 1 \, dt \right] \]

Work for problem 4(d)

\[\left(t + 1 \right)^{\frac{1}{2}} \]

\[\frac{1}{2} (t + 1)^{-\frac{1}{2}} = 0 \]