The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
Part A
Time—40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in the booklet with the goldenrod cover. Do NOT write your answers on the lavender insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

$\text{HC}_3\text{H}_5\text{O}_3(aq) \rightleftharpoons \text{H}^+(aq) + \text{C}_3\text{H}_5\text{O}_3^-(aq)$

1. Lactic acid, $\text{HC}_3\text{H}_5\text{O}_3$, is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Lactic acid is 1.66 percent dissociated in 0.50 M $\text{HC}_3\text{H}_5\text{O}_3(aq)$ at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.

(a) Write the expression for the acid-dissociation constant, K_a, for lactic acid and calculate its value.

(b) Calculate the pH of 0.50 M $\text{HC}_3\text{H}_5\text{O}_3$.

(c) Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium lactate, $\text{NaC}_3\text{H}_5\text{O}_3$, in 250. mL of 0.50 M $\text{HC}_3\text{H}_5\text{O}_3$. Assume that volume change is negligible.

(d) A 100. mL sample of 0.10 M HCl is added to 100. mL of 0.50 M $\text{HC}_3\text{H}_5\text{O}_3$. Calculate the molar concentration of lactate ion, $\text{C}_3\text{H}_5\text{O}_3^-$, in the resulting solution.

\[
\text{a)} \quad K_a = \frac{[\text{C}_3\text{H}_5\text{O}_3^-][\text{H}^+]}{[\text{HC}_3\text{H}_5\text{O}_3]} \\
\text{.5 M is 1.66 \% dissociated.} \\
\text{.0083 M is dissociated.} \\
\text{.4917 M is not} \\
\text{equil: } 0.4917 \text{M} \quad 0.0083 \text{M} \quad 0.0083 \text{M}
\]

GO ON TO THE NEXT PAGE.
b) (Find pH.) $\text{pH} = -\log [H^+]$
\[[H^+] = 0.0083 \text{M} \]

\[\text{pH} = -\log [0.0083] \quad [\text{pH}] = 2.08 \]

c) $\text{HC}_3\text{H}_5\text{O}_3 (aq) \rightleftharpoons \text{H}^+ (aq) + \text{C}_3\text{H}_5\text{O}_3^- (aq)$

\begin{align*}
\text{Start:} & \quad 0.5 \text{M} \\
\text{Change:} & \quad -x \\
\text{Equil.} & \quad 0.5 - x \\
\end{align*}

\[0.045 \text{ moles } + 0.25 \text{ L } = 0.18 \text{ M NaC}_3\text{H}_5\text{O}_3 \]

\[K_a = \frac{[C_3H_5O_3^-][H^+]}{[HC_3H_5O_3]} \]

\[K_a = \frac{x((0.5-x))}{x} \]

\[x \text{ is very small and negligible} \]

\[K_a = 1.4 \times 10^{-4} \rightarrow \frac{1.4 \times 10^{-4}}{0.5} = 0.0028 \]

\[\text{pH} = -\log [H^+] = -\log (0.0039) \quad [\text{pH}] = 2.4 \]

d) $0.1 \text{ L } \times 0.1 \text{ M} = 0.01 \text{ moles HCl}$

\[0.1 \text{ L } \times 0.5 \text{ M} = 0.05 \text{ moles HC}_3\text{H}_5\text{O}_3 \]

\[\text{Volume} = 100 \text{ mL} + 100 \text{ mL} = 200 \text{ mL} = 0.2 \text{ L} \]

\[\frac{0.01 \text{ moles}}{0.2 \text{ L}} = 0.05 \text{ M HCl} \]

\[\frac{0.05 \text{ moles}}{0.2 \text{ L}} = 0.25 \text{ M HC}_3\text{H}_5\text{O}_3 \]

\[\text{HCl dissociates} \]

\[\text{HC}_3\text{H}_5\text{O}_3 (aq) \rightarrow \text{H}^+ (aq) + \text{C}_3\text{H}_5\text{O}_3^- (aq) \text{ completely (100%)} \]

\begin{align*}
\text{Start:} & \quad 0.25 \text{ M} \\
\text{Equil.:} & \quad 0.05 \text{ M} \\
\end{align*}

\[K_a = \frac{0.05}{0.25} \]

\[1.4 \times 10^{-4} = 0.05 \frac{x}{0.25} \quad x = 7 \times 10^{-4} \]

\[[C_3H_5O_3^-] = 7 \times 10^{-4} \text{ M} \]
CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in the booklet with the goldenrod cover. Do NOT write your answers on the lavender insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

\[
\text{HC}_3\text{H}_5\text{O}_3(aq) \rightleftharpoons \text{H}^+(aq) + \text{C}_3\text{H}_5\text{O}_3^-(aq)
\]

1. Lactic acid, \(\text{HC}_3\text{H}_5\text{O}_3\), is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Lactic acid is 1.66 percent dissociated in 0.50 \(M\) \(\text{HC}_3\text{H}_5\text{O}_3(aq)\) at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.

(a) Write the expression for the acid-dissociation constant, \(K_a\), for lactic acid and calculate its value.

(b) Calculate the pH of 0.50 \(M\) \(\text{HC}_3\text{H}_5\text{O}_3\).

(c) Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium lactate, \(\text{NaC}_3\text{H}_5\text{O}_3\), in 250. mL of 0.50 \(M\) \(\text{HC}_3\text{H}_5\text{O}_3\). Assume that volume change is negligible.

(d) A 100. mL sample of 0.10 \(M\) \(\text{HCl}\) is added to 100. mL of 0.50 \(M\) \(\text{HC}_3\text{H}_5\text{O}_3\). Calculate the molar concentration of lactate ion, \(\text{C}_3\text{H}_5\text{O}_3^-\), in the resulting solution.

\[
\text{GO ON TO THE NEXT PAGE.}
\]
\[1.3 \times 10^{-4} = \frac{[H^+][C_2H_5OD_2^-]}{[HC_2H_5OD_2]} \]

\[1.3 \times 10^{-4} = \frac{[x + 0.05][x]}{[0.25 - x]} \]

\[x = 0.00064 \]

\[6.4 \times 10^{-4} \text{ M of } C_2H_5OD_2 \]