
2000 Advanced Placement Program®

Free-Response Questions

The materials included in these files are intended for use by AP® teachers for course
and exam preparation in the classroom; permission for any other use must be

sought from the Advanced Placement Program. Teachers may reproduce them, in
whole or in part, in limited quantities, for face-to-face teaching purposes but may
not mass distribute the materials, electronically or otherwise. These materials and

any copies made of them may not be resold, and the copyright notices must be
retained as they appear here. This permission does not apply to any third-party

copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement
Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their

programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity.
Founded in 1900, the association is composed of more than 3,800 schools, colleges, universities, and other educational organizations. Each year, the

College Board serves over three million students and their parents, 22,000 high schools, and 5,000 colleges, through major programs and services in college
admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®,

the Advanced Placement Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that
commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2000 by College Entrance Examination Board and Educational Testing Service. All rights reserved. College Board, Advanced Placement
Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-2-

COMPUTER SCIENCE AB

SECTION II
Time—1 hour and 45 minutes

Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN C++.

Note: Assume that the standard libraries (e.g., iostream.h, fstream.h, math.h, etc.) and the AP C++
classes are included in any program that uses a program segment you write. If other classes are to be included, that
information will be specified in individual questions. Unless otherwise noted, assume that all functions are called
only when their preconditions are satisfied. A Quick Reference to the AP C++ classes is included in the case study
insert.

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-3-

1. One way of encrypting a word is to encrypt pairs of letters in the word together. A scheme to do this is to fill a
6 x 6 square with the 26 capital letters of the alphabet and the ten digits ’0 ’ through ’9 ’. Each letter and
digit appears exactly once in the square.

To encrypt a letter pair, the rectangle formed by the two letters is used. Each letter of the original pair is replaced
by the letter located on the same row and in the other corner of the rectangle. If both letters happen to be in the
same row or column, the letters are swapped.

For example, in the following arrangement AP is encrypted as DM.

 S T U V W X

 Y Z 0 1 2 3

 4 5 6 7 8 9

 A---B---C---D E F
 | |
 G H I J K L
 | |
 M---N---O---P Q R

Consider the following declaration for a class that uses this scheme to encrypt a word.

struct Point
{
 int row;
 int col;

 Point(); // default constructor
 Point(int newRow, int newCol); // sets row to newRow, col to newCol
};

class Encryptor
{
 public:
 Encryptor();
 // fills the matrix with the 26 letters of the alphabet
 // and the 10 digits ’ 0 ’ through ’ 9 ’

 apstring EncryptWord(const apstring & word) const;
 // returns an encrypted form of the word

 private:
 apmatrix<char> myMat;

 apstring EncryptTwo(const apstring & pair) const;
 // returns an encrypted form of the pair

 Point GetCoordinates(char ch) const;
 // returns the coordinates of ch in the 2-dimensional array
};

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-4-

(a) Write member function GetCoordinates, as started below. GetCoordinates takes a given letter
or digit and returns its row and column in the 2-dimensional array. Assume that the parameter ch is a
capital letter in the range ’A ’ through ’Z ’ or a digit in the range ’0 ’ through ’9 ’.

The following example shows the point locations of character ch in the given matrix.

 Encryptor.myMat ch Point coordinates

 S T U V W X P row = 5 col = 3

 Y Z 0 1 2 3 8 row = 2 col = 4

 4 5 6 7 8 9 M row = 5 col = 0

 A B C D E F

 G H I J K L

 M N O P Q R

Complete function GetCoordinates below.

Point Encryptor::GetCoordinates(char ch) const
// precondition: ’ A ’ ≤ ch ≤ ’ Z ’ or ’ 0 ’ ≤ ch ≤ ’ 9 ’
// postcondition: returns the row and column number of the
// location of ch in myMat

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-5-

(b) Write member function EncryptTwo, as started below. EncryptTwo is passed a two-character string
and returns an encoded two-character string.

The encoding of a letter pair is formed as follows.

1. If both letters are in the same row or column, swap the two letters.

2. Otherwise, find the other two corners of the rectangle formed by the two letters. Each letter of the
original pair is replaced by the letter located on the same row and in the other corner of the
rectangle.

For example, to encrypt a letter pair, say NE, look at the rectangle with corners N and E. The encrypted
letter pair is QB because Q is the letter at the other corner on the same row as N, and B is the letter at
the other corner on the same row as E.

 S T U V W X

 Y Z 0 1 2 3

 4 5 6 7 8 9

 A B---C---D---E F
 | |
 G H I J K L
 | |
 M N---O---P---Q R

 Letters: BR NE ET RE TH PR GG
Encrypted: FN QB BW QF HT RP GG

In writing EncryptTwo, you may call GetCoordinates specified in part (a). Assume that
GetCoordinates works as specified, regardless of what you wrote in part (a).

Complete function EncryptTwo below.

apstring Encryptor::EncryptTwo(const apstring & pair) const
// precondition: pair.length() is 2
// postcondition: returns an encoded two-character string

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-6-

(c) Write member function EncryptWord, as started below. EncryptWord takes a word parameter and
returns a string that contains the encryption of that word. Every two letters of the word are examined and
encrypted by replacing the original letters with those located in the opposite corners of the rectangle formed
by the two letters. If the original word contains an odd number of letters the last letter is unchanged.

The following are examples of encrypted words using the 2-dimensional array shown below.

 S T U V W X

 Y Z 0 1 2 3

 4 5 6 7 8 9

 A B C D E F

 G H I J K L

 M N O P Q R

 Word: CO MP UT ER SC IE NC E ST UD EN TS
Encrypted: OC PM TU FQ UA KC OB E TS VC BQ ST

In writing EncryptWord, you may call EncryptTwo specified in part (b). Assume that
EncryptTwo works as specified, regardless of what you wrote in part (b).

Complete function EncryptWord below.

apstring Encryptor::EncryptWord(const apstring & word) const
// precondition: word contains only capital letters ’ A ’ through ’ Z ’
// and digits ’ 0 ’ through ’ 9 ’.
// postcondition: returns an encrypted version of word, in which every
// two letters have been examined and encrypted by
// replacing the original letters with those located
// in the opposite corners of the rectangle formed by
// the two letters. If the original word contains an odd
// number of letters, the last letter is left unchanged.

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-7-

2. An infix expression is an expression in which the operator is placed between the two operands, as in traditional
algebraic notation. (For this problem, the only operations that we will consider are addition and multiplication.)
Ambiguities in the expression are resolved by precedence rules (multiplication before addition) and left-to-right
evaluation of operators of equal precedence. For example, in the following expression, the two multiplications
would be evaluated first, then the additions would be evaluated from left to right.

3 * 4 + 5 * 2 + 8

A postfix expression is a sequence of numbers and arithmetic operators (+, *) that is evaluated from left to
right by applying each operator to the two subexpressions immediately preceding it. For example, the following
postfix expression is equivalent to the infix expression given above.

3 4 * 5 2 * + 8 +

In this postfix expression,
 the first "*" applies to 3 and 4; 3 * 4 = 12
 the second "*" applies to 5 and 2; 5 * 2 = 10
 the first "+" applies to the results of these two subexpressions, 12 + 10 = 22
 and the last "+" applies to the last subexpression and the number 8,
 resulting in the final evaluation. 22 + 8 = 30

Numbers and operators in the expression are called tokens. A token is either an integer or one of the operators
+ or *. Tokens are represented using the following definitions.

enum TokenType {PLUS, TIMES, NUMBER};
struct Token
{
 TokenType op; // op == NUMBER means token represents a value
 int value; // the value represented if op is NUMBER;
 // otherwise, value is undefined
};

If a token has NUMBER for its op, then the token represents a value.

(a) Write overloaded operator<, as started below. If the precedence of the token lhs is less than the
precedence of rhs, then operator< should return true. Tokens of type PLUS should have lower
precedence than tokens of type TIMES, which should have lower precedence than tokens of type
NUMBER.

Complete operator< below.

bool operator< (const Token & lhs, const Token & rhs)

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-8-

(b) Write function InfixToPostfix, as started below. InfixToPostfix should fill the queue of
tokens, postQ, with the postfix expression that is equivalent to the infix expression given in infixQ.
The token at the front of infixQ represents the first token in the infix expression (3 in the example
above), and the token at the back of the infixQ represents the last token in the expression (8 in the
example above).

An infix expression can be translated to a postfix expression as follows. Use a stack to store operator tokens
during processing. Process each token from the infix expression in turn.

• If a token is an operand (a number), then put it into the postfix expression.

• If a token is an operator and the stack is empty, then push the token on the stack. If the stack is not empty
and the precedence of the token is less than or equal to the precedence of the token on top of the stack,
then pop the token off the stack and put it into the postfix expression. Do this until the stack is empty or
the precedence of the operator is greater than the precedence of the operator on top of the stack. Then
push the current operator onto the stack.

• When the infix expression has been processed, put the operators remaining on the stack into the postfix
expression.

In writing InfixToPostfix, you may call operator< specified in part (a). Assume that
operator< works as specified, regardless of what you wrote in part (a).

Complete function InfixToPostfix below.

void InfixToPostfix(const apqueue<Token> & infixQ,
 apqueue<Token> & postQ)
// precondition: the sequence of tokens in infixQ represents a
// valid infix expression using +, *, and integers;
// postQ is empty
// postcondition: the sequence of tokens in postQ represents a
// valid postfix expression equivalent to the
// infix expression represented by infixQ

{
 apqueue<Token> tempQ = infixQ;

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-9-

3. Consider changing the internal representation of a BigInt to a linked list implementation. The linked list
nodes are implemented using the following declarations.

struct DigitNode
{
 char digit;
 DigitNode * next;
 DigitNode(char newDigit, DigitNode * newNext);
};

DigitNode::DigitNode(char newDigit, DigitNode * newNext)
 : digit(newDigit), next(newNext)
{}

In the declaration of the BigInt class, the private data member myDigits is changed from an
apvector to a pointer to a DigitNode, as follows.

DigitNode * myDigits;

Note that the private data member myNumDigits continues to hold the number of digits in the BigInt.

The diagram below shows the linked list representation of the number 1984 stored as a BigInt.

Note that the least significant digit in this linked list implementation is stored in the last node of the list.

(a) Write a new implementation for private member function AddSigDigit to reflect the change to the
linked list implementation of BigInt.

Complete function AddSigDigit below.

void BigInt::AddSigDigit(int value)
// postcondition: value added to BigInt as most significant digit

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-10-

(b) Write a new implementation for private member function GetDigit() to reflect the change to the linked
list implementation of BigInt. For this function only, if the precondition is false then GetDigit
returns zero.

Complete function GetDigit below.

int BigInt::GetDigit(int k) const
// precondition: 0 ≤ k < NumDigits()
// postcondition: returns k-th digit (0 if precondition is false)
// Note: GetDigit(0) returns the least significant digit

(c) Write the destructor for the BigInt class with the new linked list implementation. The destructor deletes
all nodes and returns them to memory.

Complete the destructor below.

BigInt::~BigInt()
// postcondition: all the nodes in myDigits are returned to the heap

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

GO ON TO THE NEXT PAGE.
-11-

4. Consider a binary tree that implements a decision tree to give advice on some subject. Internal (nonleaf) nodes
contain decisions to be made; leaf nodes represent the final advice or recommendation. For example, the
following decision tree could be used to provide advice on choosing a movie.

Consider the following representation for the nodes of a tree.

struct AdviceNode
{
 apstring QorA; // a question or an answer
 AdviceNode * yes; // yes branch
 AdviceNode * no; // no branch

 AdviceNode(const apstring & s); // constructor
};

Each node contains either a question or an answer (final recommendation). If QorA is a question, the
Advice node has two non-empty subtrees, representing Yes and No answers to the question. If QorA
is an answer, the node has no children. Function IsQuestionNode, whose specification is given below,
is provided to determine whether a node is a question or an answer node.

bool IsQuestionNode(AdviceNode * T);
// precondition: T is not NULL
// postcondition: returns true if T points to a question node;
// otherwise, returns false

Do not write the body of IsQuestionNode.

2000 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2000 College Entrance Examination Board and Educational Testing Service. All rights reserved.
AP is a registered trademark of the College Entrance Examination Board.

-12-

(a) Write function GiveAdvice, as started below. If parameter T points to a question node,
GiveAdvice should print the question, read a ’Y’ or ’N’ response from cin, and then continue
down the appropriate path in the tree. (Assume that users always respond with either ’Y’ or ’N’.) If
parameter T points to an answer node, GiveAdvice should print the answer.

For example, if T is the tree given above and the user always answers ’Y’, then the output would be as
follows (where user input is given in boldface).

Do you want to see a romantic movie? Y
A classic movie? Y
Casablanca

In writing GiveAdvice, you may call function IsQuestionNode specified at the beginning of this
question. Assume that function IsQuestionNode works as specified.

Complete function GiveAdvice below.

void GiveAdvice(AdviceNode * T)
// precondition: T is not NULL

(b) Write function TracePath, as started below. TracePath should search for the parameter movie in
decision tree T, recursively tracing the path from the root of the tree to the movie. If the movie is in tree T,
TracePath pushes the questions and answers along that path onto the parameter pathStack and
returns true. If the movie is not in tree T, TracePath returns false. For question nodes, the
question and its answer should be stored together as a single string in the stack.

For example, if T is a pointer to the root of the decision tree shown at the beginning of this question and S
is an empty stack, then after the call TracePath(T, "Jaws", S), S would contain the following
elements.

top -> "Do you want to see a romantic movie? No"
 "Science Fiction? No"
 "Suspense? Yes"
 "Jaws"

In writing TracePath, you may call function IsQuestionNode specified at the beginning of this
question. Assume that function IsQuestionNode works as specified. You may also assume that a given
movie appears at most once in the decision tree.

Complete function TracePath below.

bool TracePath(AdviceNode * T, const apstring & movie,
 apstack<string> & pathStack)
// precondition: T is not NULL

END OF EXAMINATION

	ap_frq00_copyright.pdf
	2000 Advanced Placement Program®

