The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
Question 1

Sample 1 (Score 15)

This student uses Method 2 for parts (b) and (c), first using the net force in part (b) to calculate the average acceleration while the engine is firing, and then determining the speed attained when the engine stops in part (c). The student also uses energy conservation instead of kinematics to determine the distance traveled after the engine stops firing.

Sample 2 (Score 13)

In part (c), this student does not calculate the distance traveled while the engine is firing, and loses that point and the point for adding the two distances.

Question 2

Sample 1 (Score 15)

This student uses the second explanation noted for part (b), and explicitly indicates in (d) that at $x = 0$ the energy is all kinetic, thus receiving the point for the indication that potential energy is zero at $x = 0$.

Sample 2 (Score 15)

This student writes just about the bare minimum needed to indicate an understanding of the situation and show the appropriate work.

Question 3

Sample 1 (Score 15)

This student has neatly organized solutions, and even draws a circuit diagram for each case. Note in part (d)i that the student recalculates the power for each light bulb and adds them, instead of determining the total resistance or simply adding the two rated powers.

Sample 2 (Score 14)

This student loses 1 point in part(c), where the order of the series bulbs is reversed.
Question 4

Sample 1 (Score 15)

The student’s image for part (a) is not exactly at 15 cm, but it is accurate enough given the slight errors in ray drawing expected. The student does not explicitly state in (e) that the object is inverted, but does show this in the diagram and describes the image as real.

Sample 2 (Score 15)

This student uses the alternate solution for part (c), and the same equation in part (d). This student also shows an inverted image in (e) and describes it as real.

Question 5

Sample 1 (Score 10)

This student’s solution is complete and straightforward.

Sample 2 (Score 9)

This student uses the alternate solution in part (d), but loses 1 point: a factor of \(\frac{v}{g} \) is lost in solving for \(r \), and this makes the solution for acceleration incorrect.

Question 6

Sample 1 (Score 10)

This student uses the method in example 1 for part (a). In part (d), the student does not explicitly define \(x_1 \) or \(x_2 \), but their meaning is clear in context and all other symbols are defined so full credit was awarded.

Sample 2 (Score 8)

This student earns full credit for the first two parts, but only partial credit for the last two. The measurements needed are complete and clearly described, and the student shows understanding of how to determine the buoyant force, but does not describe how to get from that force to a determination of the fluid density.
Question 7

Sample 1 (Score 10)

This student has a well-organized solution, with a clear explanation for part (c).

Sample 2 (Score 8)

This student only earns 1 point in the last part, for the indication of conservation of momentum.