The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.
CALCULUS AB
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

1. Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1 + x^2}$ and $y = 4 - 2x$, as shown in the figure above.
 (a) Find the area of R.
 (b) Find the volume of the solid generated when R is revolved about the x-axis.
 (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

2. The number of gallons, $P(t)$, of a pollutant in a lake changes at the rate $P'(t) = 1 - 3e^{-0.2\sqrt{t}}$ gallons per day, where t is measured in days. There are 50 gallons of the pollutant in the lake at time $t = 0$. The lake is considered to be safe when it contains 40 gallons or less of pollutant.
 (a) Is the amount of pollutant increasing at time $t = 9$? Why or why not?
 (b) For what value of t will the number of gallons of pollutant be at its minimum? Justify your answer.
 (c) Is the lake safe when the number of gallons of pollutant is at its minimum? Justify your answer.
 (d) An investigator uses the tangent line approximation to $P(t)$ at $t = 0$ as a model for the amount of pollutant in the lake. At what time t does this model predict that the lake becomes safe?
3. A particle moves along the x-axis so that its velocity \(v \) at any time \(t \), for \(0 \leq t \leq 16 \), is given by \(v(t) = e^2 \sin^2 t - 1 \). At time \(t = 0 \), the particle is at the origin.

 (a) On the axes provided, sketch the graph of \(v(t) \) for \(0 \leq t \leq 16 \).

 (Note: Use the axes provided in the test booklet.)

 \[
 \begin{array}{c|c}
 t & v(t) \\
 \hline
 0 & \text{origin} \\
 4 & 8 \\
 8 & 4 \\
 12 & 0 \\
 16 & -8 \\
 \end{array}
 \]

 (b) During what intervals of time is the particle moving to the left? Give a reason for your answer.

 (c) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 4 \).

 (d) Is there any time \(t, 0 < t \leq 16 \), at which the particle returns to the origin? Justify your answer.

END OF PART A OF SECTION II
4. The graph of a differentiable function f on the closed interval $[-3, 15]$ is shown in the figure above. The graph of f has a horizontal tangent line at $x = 6$. Let $g(x) = 5 + \int_0^x f(t)\,dt$ for $-3 \leq x \leq 15$.

(a) Find $g(6)$, $g'(6)$, and $g''(6)$.

(b) On what intervals is g decreasing? Justify your answer.

(c) On what intervals is the graph of g concave down? Justify your answer.

(d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t)\,dt$ using six subintervals of length $\Delta t = 3$.

5. Consider the differential equation $\frac{dy}{dx} = \frac{3 - x}{y}$.

(a) Let $y = f(x)$ be the particular solution to the given differential equation for $1 < x < 5$ such that the line $y = -2$ is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.

(b) Let $y = g(x)$ be the particular solution to the given differential equation for $-2 < x < 8$, with the initial condition $g(6) = -4$. Find $y = g(x)$.
6. Ship \(A \) is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship \(B \) is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let \(x \) be the distance between Ship \(A \) and Lighthouse Rock at time \(t \), and let \(y \) be the distance between Ship \(B \) and Lighthouse Rock at time \(t \), as shown in the figure above.

(a) Find the distance, in kilometers, between Ship \(A \) and Ship \(B \) when \(x = 4 \) km and \(y = 3 \) km.

(b) Find the rate of change, in km/hr, of the distance between the two ships when \(x = 4 \) km and \(y = 3 \) km.

(c) Let \(\theta \) be the angle shown in the figure. Find the rate of change of \(\theta \), in radians per hour, when \(x = 4 \) km and \(y = 3 \) km.