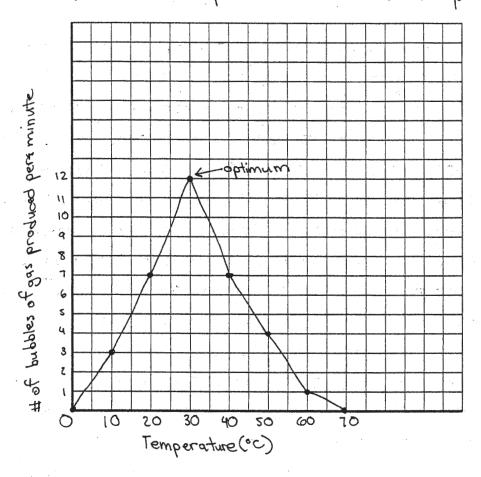


AP® Biology 2005 Sample Student Responses

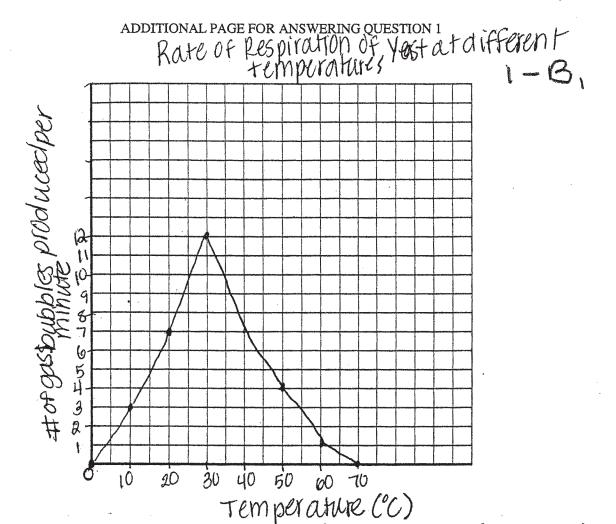
The College Board: Connecting Students to College Success


The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT $^{\otimes}$, the PSAT/NMSQT $^{\otimes}$, and the Advanced Placement Program $^{\otimes}$ (AP $^{\otimes}$). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.

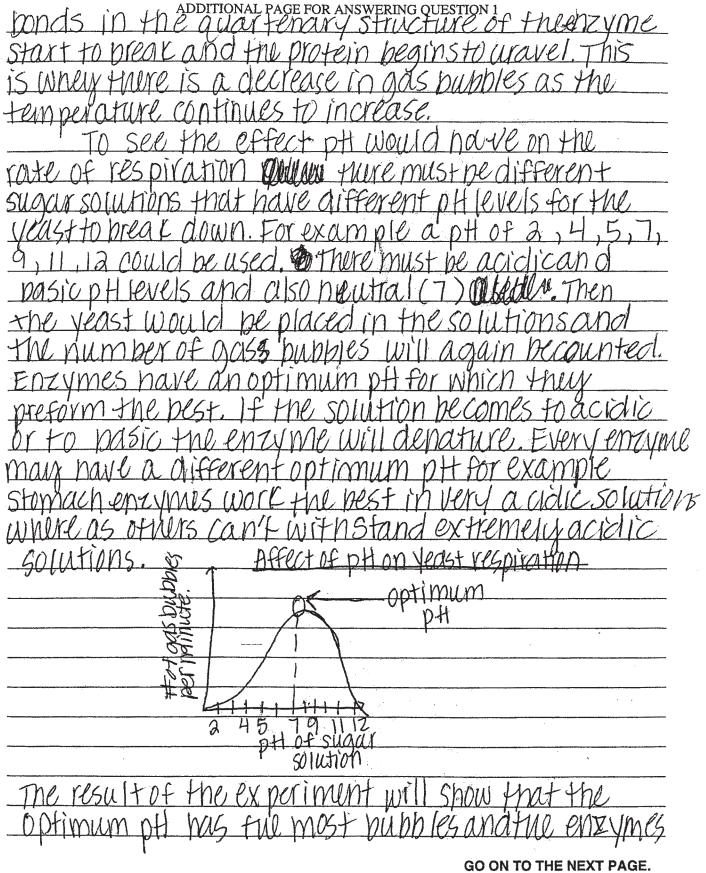
Visit the College Board on the Web: www.collegeboard.com.

AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.


ADDITIONAL PAGE FOR ANSWERING QUESTION 1 1-A The Effect of Temperature on the Rate of Respiration

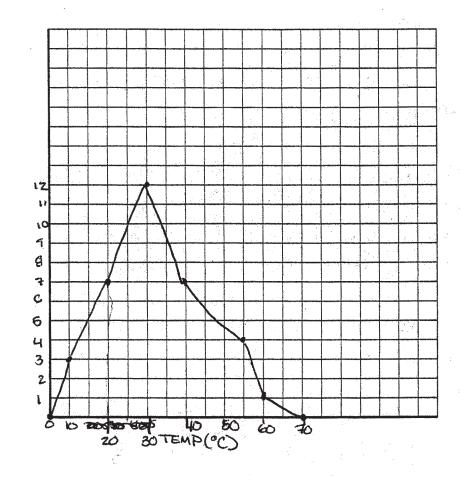
I A.				,				
(the graph is	above.)						
			e for	respira	tion in	the	veast	i's
The optimus 30°C. This :	s the	temperei	ture in	which	the e	nzymes	involve	d
will denature		\				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
						p.o.		
.,			. ,			A 81		
		i et					,	· · · · · · · · · · · · · · · · · · ·
				•				

Enzymes are proteins that speed up reactions by
lowering of the took of activation. Substrates randomly go
into the active sites of enzymes and induced fit occurs. This
is when the conformation of the enzymes changes so that the
engine substrate can fit in the active site. As the mum temperature
increases, the number of bubbles of gas produced per minute
increases as well until and a temperature optimum is reached.
After the optimum is reached, the number of bubbles produced
per minutes decreases as the temperature increases. The rate
of respiration is increasing as the temperature is increasing
blc of its increased kinetic energy. Increased kinetic energy
rauses the subtrates and the engines to bounce faster in a
random tashion. Faster movement between these two causer
more substrates to enter the active sites of the enzymes,
and lowing the the reaction's energy of activation. This
cause the the reaction to increase
The optimum temperature is the temperature in which
the enzyme denatures causings its conformation to change.
The optimum temp, here is 30°C. When the enzyme denatures,
its Van der Waals, ionic bonds, hydrogen bonds and the other
bonds to cease. When they denature, the substrates can no
longer enter the active sites of the ensympes, causing the
reaction to slow down. This is why after the optimum is
reached, the nate of the reaction decrease.


The effect of varying the pH of the sugar solution on
the nate of respiration can be tested. The independent variable
is the different pH levels. The levels of IV are: 1 pH, 4 pH, 7 pH,
11 pH, and 14 pH. The dependent variable is the sagar solution
* rate of (Oz being released from the yeast. The control
would be the sugar solution with pH of 7 so that it could
be used as basis for comparison. It would be used to compare
solutions of increasing + decreasing ptl. The nate of COz being
released would be recorded using a respirameter. 5 trials would
be done for each pH level and the results would then be
averaged. Possible results could Bir be for 1 pH: 0.3 ml/mining
4pH: 5.3 mL m2/min, 7pH: 10.7 mL/m2/min, 11pH: 5.7 mL/m2/min,
and 14 pH: 0.8 mL/m2/min. The constant is the sugar type of
sugar solution, which much be kept the same throughout the
experiment.

The optimum temperature for respiration by yeast is 30°C because it produced the most gaspubbles indication

Initally as the femperature goes up the rate of reaction increases in turn increasing respiration. All encymes have an optimum temperature where they are a pie to catalyse reactions the fastest. After that temperature is reached the encymes starts to de nature and them ponds preak make them who also function. After 30'c the ny drogen


1Ba

-6-

accounting at their full potential	1 B3
	endekte er endelde met er er med de derektet blev er endelde til et de det dette Aderse en en
	•
	A STATE OF THE STA
	And the second s

DE THE YEAST IS PLACED IN A SIGNE SOUTION WITH THE A

TEMPERATURE OF O°C THE AMOUNT OF BUBBLES PRODUCED

PER MINUTE IS 7870, BUT AS THE TEMPERATURE INCRESSES

THE AMOUNT OF BUBBLES ARE IN CRESSED US WELL TO THIS

AFFECT HAPPENS UNTILL 30°C IS REACHED BY THE YEAST

INTHE SUGAR SOUTION WITH 12 BUBBLES PROTUCED PER MINUTE

UNCE 40°C IS REACHED THE IN MITTERS NUMBERS OF

BUBBLET OF GAS PROTUCED BY WAS DECRESSED BY 5,

THEN AT 50°C BY I TWO. THE BY THE TIME THE SUGARE

AND YEAST REACHED 70°C THE THE AMOUNT OF

RUBBLES OF GAS PRODUCD IS ZERO. THESE RESULTS
COULD BG DO TO THE YEAST REACHTNG MAXIMON
PRODUCTION AT 30°C AND STOP PRODUCTION AT 70°C.
F000 70000000000
(C)
PLACE THE YEAST CHIS INTO \$7 DIFFERENT
CONSENTRATIZONS OF PH OF SUGAR SOLUTION.
PH OF 7 FOR NUTPALITY, 6,5,4 FOR POIDIC, AND 8,9,10
FOR A DA BASIC DOH. MESURE THE AMOUNT OF GASOUS
BO'BOBBS BURBLES PRODUCED GACH MINUTE, BY FOR
70 minutes & From EACH DH consentention of
SUMAR SOLUTION. TAKE THE AVERAGE OF THE RESILTS
AND COMPARE.
DH 1415 6 7 8 9 10
No. OF BURBLES OF 0 2 4 10 6 3 0
CHAS PRODUCD/MIN
CIPS PRODUCT IVIII

- 2. The unit of genetic organization in all living organisms is the chromosome.
 - (a) **Describe** the structure and function of the parts of a eukaryotic chromosome. You may wish to include a diagram as part of your description.
 - (b) **Describe** the adaptive (evolutionary) significance of organizing genes into chromosomes.
 - (c) How does the function and structure of the chromosome differ in prokaryotes?

a. The dironosone is the form, genetic material in enkarystes during
NATOSIS OF CELL division. It is a condensed and staining
body of DNA. Drogsing Down It consists of DNA which
is a dobble helix (writed ladder) bound around proteins
called histories. Histories wind and unwind AVA is make
certain DNA sequences willable for transcription. Chromosomes
Books during cell division consist of two gister dismodule joined by
a centronère. Chromosomes somo exist as chromatin
during interphase. They are hold DNA which are templates
for the production of MRNA which go to ribosomes to
produce proteins Each gene of DNA codes for one polypeptide by theory. Chromestin exists as evaluation
polypeptide by theory. Chromestin exists as evaluation
which is bosely borone and available for repeated
transcription and heterochromatin which is tightly
wound. The Rinetichore of the centronere provides a place
or spirible fibers to attach and pull chromosomer to opposite estes done b. Drawizing genes into chromosomes allows for the durisin.
D. Organicing genes into chromosomos allows for the
genetic recompration by crossing over during mecosis.
Merosis is serval reproduction of 4 nonidentical
gametes pring prophese I of revois honologous disconsines the Paint during synapsis. They form chiasmata, where the two chromosomer join Genetic material is
where he two chromosomer lique Genetic material is
exchanged between the two thromsomes divine crossing
exchanged between the two thromosomes during crossing over. This provides for genetic variability.

ADDITIONAL PAGE FOR ANSWERING QUESTION 2 ONE also Significan as they prokani

7: 62. The unit of genetic organization in all living organisms is the chromosome.

- (a) **Describe** the structure and function of the parts of a eukaryotic chromosome. You may wish to include a diagram as part of your description.
- (b) Describe the adaptive (evolutionary) significance of organizing genes into chromosomes.
- (c) How does the function and structure of the chromosome differ in prokaryotes?

	,
a)	A Eukanyotic chromosome is essentially
•	chromatin, a stringy substance occupying the nucleus containing DNA and histone
	chromatin, a stringy substance occupying
	the nucleus containing DNA and historie
	proteins, when it condenses. A replicated
	chromosome replicated chromosome
	chromosome replicated chromosome original sisterchromatid chromosome kinetochone
	centromere
	chromosome consists of two sister chromatias
	joined together by a centromere. The centromer
	has two kinetochores, which where two
	has two kinetochores, which where two spindle fibers that attach during cell
	division. The chromosome's function is
	to carry genetic information (DNA). By
	Shortening and co' arranging in this
	structure it is easier for DNA to be
	transferred to daughter cells making
	the process shorter and more efficient for
	parent cells.
	D) By organizing denetic information into
	D) by organizing genetic information into chromosomes, it increases genetic
	Variation in the andustion of comptes
	By promoting crossing over during meiosisand
	allowing for independent assortm GO ON TO THE NEXT PAGE.
	By promoting chossing over during meiosisand allowing for independent assortment and random separation.
	TO WOOT SCHOOL TO THE

This leads to more adaptive species. It also
requires less energy to transfer genetic
information in chimosomes using minimal
energy.
3
c) tho karyotic chromosomes serve the same
function as Eukanyotic chromosomes. They
Contain MA. Their structure, however is dramatically different. Aman Arranged
aramatically altherent. Aman Arranged
in a circle, the Prokaryotic chromosome
also has different ways of replication. After condensing from the nucleoid, into a
rivole verlication. and both walls from
circle replication, got both ways from
nucleoid Chromosome

- 2. The unit of genetic organization in all living organisms is the chromosome.
 - (a) **Describe** the structure and function of the parts of a eukaryotic chromosome. You may wish to include a diagram as part of your description.
 - (b) **Describe** the adaptive (evolutionary) significance of organizing genes into chromosomes.
 - (c) How does the function and structure of the chromosome differ in prokaryotes?

a) The chromosome is the carrier of all DNA (except mitsehondrial)
and is very important in controlling how the body works. A
chromosome is a dense coil of DNA that has many structure
levels. First, the DNA looks like a "string w/ beads" because parts
of the DNA strand are wrapped around proteins and form structures
called nucleosomes Next, the DNA attatches to a protein scappold
to form looped domains. Then, the looped domains are more
tightly coiled until they form a 30 nm chromatin Piber. This
Fiber continues to cail and fold until it forms the chromosome we
see in a microscope.
-Another part of the chromosome is the
This The coiling of the chromosome serves as a way to control
gene expression. In the tight roil, there are some genes that
transcription proteins can't reach. During replication, the chromosomy
loosens up so that all the DNA can be replicated.
b) By organizing genes into chromosomes, the DNA of an organism
is more condensed and tightly packed, taking up less space. The
coiling also may protect genes from being worn down.
Chromosomes · control gene expression because of the way they
are folded. This ensures that the cell doesn't waste valuable resources
in creating something that's not needed.

ADDITIONAL PAGE FOR ANSWERING QUESTION 2

Because genes are organized into chromosomes, it is more
likely that genetic variation will occur do to crossing over during meiosis.
C) Prokaryotic DNA does not contain introns, parts of DNA that don't code for anything. Prokaryotic DNA is also less condensed, making it easier to access by proteins.
,

- 3. Angiosperms (flowering plants) have wide distribution in the biosphere and the largest number of species in the plant kingdom.
 - (a) **Discuss** the function of FOUR structures for reproduction found in angiosperms <u>and</u> the adaptive (evolutionary) significance of each.
 - (b) Mosses (bryophytes) have not achieved the widespread terrestrial success of angiosperms. **Discuss** how the anatomy and reproductive strategies of mosses limit their distribution.
 - (c) Explain alternation of generations in either angiosperms or mosses.

approach the plant and thun pollunate the plant.
the plant.
· 1
b.) Bryophytes do not contain vascular tissue. They remain
vascular tissue. They remain
small and live near in the water
for support, nutrients, and reproduction
The water surrounding a small
bryophyte such as moss gives
for support, nutrients, and reproduction. The water surrounding a small bryophyte such as moss gives the plant support but also allows diffusion and osmosis
aldows diffusion and osmosis
to occur so that the plant can
Obtain nutrients. They depend
_ on water for survival because
the meed it for nutrients +
oreproduction. Mosses produce
Sperm that ontain flagellum, &
SO the Sperm had water the
mobility to reach the eggs. This
external reproduction requires
mobility to reach the eggs. This external reproduction requires water and limits a mosses
distribution.

Ci) In angiosperms, the sporophyte
is conspicuous. The sporophyte
Then under goes meiosis to produce
hoploid spores. The spores diad
haplaid gametophyte, which is defindent
upon the sporophyte. The gametophyte
is fertilized and produces the diploid
Frante, which thin under 9028
mitosis to form the diploid
sporophyte. The cycle keeps
repeating.
- 3

- 3. Angiosperms (flowering plants) have wide distribution in the biosphere and the largest number of species in the plant kingdom.
 - (a) Discuss the function of FOUR structures for reproduction found in angiosperms and the adaptive $3\beta_l$ (evolutionary) significance of each.
 - (b) Mosses (bryophytes) have not achieved the widespread terrestrial success of angiosperms. **Discuss** how the anatomy and reproductive strategies of mosses limit their distribution.
 - (c) Explain alternation of generations in either angiosperms or mosses.

ί.	Elevated carpels open and stamen,
	which produce pollen, allow the plant to
u	use wind to spread the pollen. This means
,	that the plant can pollenate plants farther
	away, leading to greater genetic variability. Flowers are usually brightly colored and
	Flowers are usually brightly colored and
	enclose the male and temale reproductive
	systems. They serve to attract insects, and birds
	and other pollenators, who then transfer the
	palen to other angiosperms. This also increases
	genetic variability and increases distribution.
	Fruts, which are formate chocovarios the
	ovaries of the plant, are made to taste good and
	protect the seeds. Animals eat them, then
	excrete the seed at another Location. This
	introduces new species (and genes) to other
	areas and increases distribution. It is one
	of the reasons why we see such a widespread
	duthibution today.
	Seeds house the developing zygote. It is has
	a tough coat to withstand harsh environments.
	This is an ovelutionary marvel because it
	made possible wide-range distribution. Plants

	were no lander limited by the wind cap -
5-	Masses do not have seeds or flowers, which
	greatly limits animals as a source of
	fransporting seeds and pollen. 1000000000000000000000000000000000000
	They are smaller physically, and are not
	brightly colored or scented. They normally
	resort to asexual reproduction, which limits
	the number of species as well as distribution.
C.	
	In angiosperms of the parent generation is con reproduce haploid, they then make gametes
	via nitosis enet mejosis). They then reproduce
	either sexually or asexually to make as diploid
	angiosperm. The diploid Color than broduce
	naproid offspring by going through meiosis
	there twice. These gametes are combined
	to make a haptoid

- 3. Angiosperms (flowering plants) have wide distribution in the biosphere and the largest number of species in the plant kingdom.
 - (a) **Discuss** the function of FOUR structures for reproduction found in angiosperms and the adaptive $3C_1$ (evolutionary) significance of each.
 - (b) Mosses (bryophytes) have not achieved the widespread terrestrial success of angiosperms. **Discuss** how the anatomy and reproductive strategies of mosses limit their distribution.
 - (c) Explain alternation of generations in either angiosperms or mosses.

A). Angiosperms reproduce with seeds. Seeds
are specifically designed to adapt to
terrestrial life. They are light and
therefore can easily be dispersed
throughout a location. They have an
endosperm or cotyledon to provide
the embryo with nutrition and a
hard order outer covering called the
germ used for protection. These
advantages seeds the
ability to grow despite where they
are dispersed
- Angiosperms Fertilize with pollen. 200 Pollen
is advantageous because it is easily
transferred to the ovary, by insects
or birds. This fertilization creates
seeds later used to reproduce.
· Anglosperms are unique because they
contain flowers. & Throughout evolutionary
history, these flowers have grown
more vibrant in color to attract
insects heeded for bollingtion.

Angiosperms also grow fruit. The fruit
is the mature ovary in which seeds
develop. Fruits are altsigned to be
sweet toisting and attractive to
animais. By animals taking fruit
from trees to other places, they
are taking seeds as well the seeds
not eaten by the animal are left to
grow and develop into a new plant
/
(B) Mosses are found low to the ground,
growing on rocks and trees. They
reproduce by spores because they are
seedless plants. Unlike the Angidsperms,
mosses also lack flowers. It was due to
Flowers and seeds that the Angiosperm
was able to become the most aboundant
on the planet, and because moss lacks
both of these significant traits, they
are unable to reproduce successfully.
(c) Alteration of Generations is a reproductive
trait in anglosperms. This occurs when
Each generation of the plant alternates
between the diploid stage and the
hanlaid stage. The hanlaid stage &

also called the gametophyte, is charge an the
dominaint stage while the diploid stage,
also called the sparophyte, is the recessive
stage.
·

- 4. An important defense against diseases in vertebrate animals is the ability to eliminate, inactivate, or destroy foreign substances and organisms. Explain how the immune system achieves THREE of the following:
 - Provides an immediate nonspecific immune response
 - Activates T and B cells in response to an infection
 - Responds to a later exposure to the same infectious agent
 - Distinguishes self from nonself

iate ronspecific immune respones 000 the B cells

ADDITIONAL PAGE FOR ANSWERING QUESTION 4
their major histo compatibility complexes. It also secretes proteins
such as the interlections to help stimulate the B and cylatoxic Tcells
The Books w'll proliferate into one provering spatificant books are memory iels. A later exposure to the same infectious agent w'ill ellicit
a faster response. This is because during the first exposer when
the Band Tiboth hoper and cytoxic cells were activated the
proliferated eventing their active forms and memory cells
which have receptors or their membranes specific to that
antiger. These memory cells can be structed directly by
the antigen instead of through the longer process of
antigen presenting to helper T and then one As a result the
antibody producing B cells and the cytoxic. Toels are actuated
forter and can orive off the infection quicker. Theightotoxic
T cells will lyse marked interted cells, their major histocompatibility
complexes class one will show a piece of he and gen, using the proteins
position which form a pose in the cell membrane of the inferted cells.
•

- 4. An important defense against diseases in vertebrate animals is the ability to eliminate, inactivate, or destroy foreign substances and organisms. **Explain** how the immune system achieves THREE of the following:
 - Provides an immediate nonspecific immune response
 - Activates T and B cells in response to an infection
 - Responds to a later exposure to the same infectious agent
 - Distinguishes self from nonself

A nonspecific response is provided by two nonspecific
lines of defenses. After these two lines, a specific response
would be provided. The first line of defense is
composed of skin and mucous membranes
The skin is very thick, and the outermost layers are
dead. In this sense, the skins structure meets its
function because the dead outer layers protect
the inside, living layers. Also part of the 1st line of
défense are nutrous membranes Mucous membranes
provide protection by capturing bacteria, and other
harmful Substances before they penetrate the so
body. The second line of defense is composed of
phagocytosis, fever, and inflammation. Phagocytosis
enguised by local obacognitatic cells Those cells
enquired by large phagocytotic cells. These cells eat the invading barcteria for and then release
it once the bacteria is killed. The next defense
on the second line is fever when the body is
attacked by invading bacteria, a message is sent
attacked by invading barteria, a message is sent to the hypothalamus. The hypothalamus will increase
the body temperature in hopes to dinature the bacteria.
Next is inflammation When the Skin, for example, is

When a backeria enters the body, it has identifiers called antigens. Memory B and T cells, which patrol the body for the coccurrance of had antigens, have sites that match the antigens. However, if it is a new disease, and there are no matching antibodies than antibodies must be made to fight the disease. B cells make the antibodies. The antibodies fit only to the antigens, that is why this 3° line of appearse is specific. Millions of antibodies are made to fight the disease. They antibodies are made to fight the disease. They antibodies are made to fight the disease. They antibodies are then them selves to the antigens and are then disposed of by phagocytosis. For T cells, telper T cells are the propressor T cells are then the off switch when the fight is clone.

After an infection memory B rells and memory To rells part of the body for future infection of the same backeria or disease. The memory B and T cells have antibodies on the outside of the rells. Since the antibodies are fit to specific antigens,

- An important defense against diseases in vertebrate animals is the ability to chimine, foreign substances and organisms. Explain how the immune system achieves THREE of the following: 4. An important defense against diseases in vertebrate animals is the ability to eliminate, inactivate, or destroy
 - Provides an immediate nonspecific immune response
 - Activates T and B cells in response to an infection
 - Responds to a later exposure to the same infectious agent
 - Distinguishes self from nonself

•	The immune system is initially nonspecific to foreign
	substances; the body makes several types of
	cells that attack "not self" organisms. Present to
	attack and engulf entire cells are macrophages.
	There are also cytotoxic T cells, which identify
	the invader as nonself and pump enzymes to
	destroy it. Also are natural killer cells, which
	also identify and wipe out the pathogen.
•	After the T cells have activated the B cells,
	the immune system expenences a loss in Brells;
	the ones that remain after the infection are
	Known as memory cells. These memory cells carry
	the antibodies for the antigens for an indefinite
	amount of time, and once the pathogen returns,
	Talls activate the production of Balls by
	referring to the memory cells. In this way the
	illness is destrayed much quicker than the initial
	immune response.
	· Every organism has a unique MHC molecule on the
	surface of its cells. The immune system uses its
	• Every organism has a unique MHC molecule on the surface of its cells. The immune system uses its B cells and T cells after the MHC is recognized as foreign, and only because the MHC is slightly
	as foreran, and only because the MHC is strattly
	5 /

modified. This can make transplants difficult,
because of the uniqueness in the MHC molecules
on the surfaces of cells from the donar and the
coconace It consist has provide a superior
works, rdentity self molecules (identical MHC) as
dangerous. This is why cancer alls are not often
Killed. At any rate, if a tell recognizes a fivergn
MHC, it stimulates the movement of nonspecific
immine cells that often completely destray the
works, identity self molecules (identical MHC) as dangerous. This is why cancer alls are not often killed. At any rate, if a T cell recognizes a fivergn MHC, it stimulates the movement of nonspecific immune cells that often completely destray the "unsafe" cells.