AP Physics C: Electricity and Magnetism

Free-Response Questions Set 1

ADVANCED PLACEMENT PHYSICS C TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

Electron charge magnitude,

 $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Universal gravitational

constant,

Acceleration due to gravity at Earth's surface,

 $G = 6.67 \times 10^{-11} \left(\text{N} \cdot \text{m}^2 \right) / \text{kg}^2$

 $g = 9.8 \text{ m/s}^2$

1 unified atomic mass unit,

Planck's constant,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

Vacuum permittivity,

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$

Coulomb's law constant, $k = 1/(4\pi\epsilon_0) = 9.0 \times 10^9 \text{ (N·m}^2)/\text{C}^2$

Vacuum permeability,

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$

Magnetic constant, $k' = \mu_0/(4\pi) = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

	meter,	m	mole,	mol	watt,	W	farad,	F
LINIT	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES					
Factor	Prefix	Symbol			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	С			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10^{-9}	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following assumptions are used in this exam.

- The frame of reference of any problem is inertial unless otherwise stated.
- II. The direction of current is the direction in which positive charges would drift.
- III. The electric potential is zero at an infinite distance from an isolated point charge.
- IV. All batteries and meters are ideal unless otherwise stated.
- V. Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.

MECHANICS

MEC	HANICS
$v_{x} = v_{x0} + a_{x}t$	a = acceleration
	E = energy
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	F = force
_	f = frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	h = height
$\nabla \vec{r} \vec{r}$	I = rotational inertia
$\sum F F_{net}$	I = immulas

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 $k = \text{spring constant}$ $\ell = \text{length}$ $L = \text{angular momentum}$

$$\vec{J} = \int \vec{F} \, dt = \Delta \vec{p}$$
 $m = \text{mass}$ $P = \text{power}$ $\vec{p} = m\vec{v}$ $p = \text{momentum}$

$$\begin{vmatrix} \vec{F}_f \end{vmatrix} \le \mu |\vec{F}_N|$$
 $r = \text{radius or distance}$ $T = \text{period}$ $t = \text{time}$

$$\Delta E = W = \int \vec{F} \cdot d\vec{r}$$
 $U = \text{potential energy}$
 $v = \text{velocity or speed}$

$$K = \frac{1}{2}mv^2$$
 $W = \text{work done on a system}$
 $x = \text{position}$

$$P = \frac{dE}{dt}$$

$$\mu = \text{coefficient of friction}$$

$$\theta = \text{angle}$$

$$P = \frac{dz}{dt}$$

$$\theta = \text{angle}$$

$$\tau = \text{torque}$$

$$\theta = \text{angular speed}$$

$$\alpha = \text{angular speed}$$

$$\alpha = \text{angular acceleration}$$

$$\Delta U_g = mg\Delta h$$
 $\phi = \text{phase angle}$

$$a_{c} = \frac{v^{2}}{r} = \omega^{2} r$$

$$\vec{F}_{S} = -k \Delta \vec{x}$$

$$U_{S} = \frac{1}{2} k (\Delta x)^{2}$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$x = x_{\text{max}} \cos(\omega t + \phi)$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$I = \int r^2 dm = \sum mr^2$$

$$T_S = 2\pi \sqrt{\frac{m}{k}}$$

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$$

$$v = r\omega$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega} \qquad \qquad \left| \vec{F}_G \right| = \frac{Gm_1m_2}{r^2}$$

$$K = \frac{1}{2}I\omega^2 \qquad U_G = -\frac{Gm_1m_2}{r}$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$|\vec{F}_{E}| = \frac{1}{4\pi\varepsilon_{0}} \frac{|q_{1}q_{2}|}{r^{2}}$$

$$\vec{E} = \frac{\vec{F}_{E}}{q}$$

$$\vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_{0}}$$

$$\vec{A} = \text{ area }$$

$$B = \text{ magnetic field }$$

$$C = \text{ capacitance }$$

$$d = \text{ distance }$$

$$E = \text{ electric field }$$

$$\varepsilon = \text{ emf }$$

$$F = \text{ force }$$

$$I = \text{ current }$$

$$J = \text{ current density }$$

$$E_x = -\frac{dV}{dx}$$
 $L = \text{inductance}$ $\ell = \text{length}$

$$\Delta V = -\int \vec{E} \cdot d\vec{r}$$
 $n = \text{number of loops of wire}$ per unit length $N = \text{number of charge carriers}$

$$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$$
 per unit volume

$$P = \text{power}$$

$$Q = \text{charge}$$

$$Q = \text{charge}$$

$$Q = \text{point charge}$$

$$U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$
 $q = \text{point charge}$ $R = \text{resistance}$

U = potential or stored energy

$$C = \frac{\kappa \varepsilon_0 A}{d}$$
 $V = \text{ electric potential}$
$$v = \text{ velocity or speed}$$

$$C_p = \sum_{i} C_i$$
 $V = \text{vericity of spee}$ $\rho = \text{resistivity}$ $\Phi = \text{flux}$

$$\frac{1}{C_{s}} = \sum_{i} \frac{1}{C_{i}}$$
 $\kappa = \text{dielectric constant}$
$$\vec{F}_{M} = q\vec{v} \times \vec{B}$$

$$I = \frac{dQ}{dt} \qquad \qquad \oint \vec{B} \cdot d\vec{\ell} = \mu_0 I$$

$$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2 \qquad d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{\ell} \times \hat{r}}{r^2}$$

$$R = \frac{\rho \ell}{A} \qquad \qquad \vec{F} = \int I \ d\vec{\ell} \times \vec{B}$$

$$\vec{E} = \rho \vec{J} \qquad \qquad B_s = \mu_0 n I$$

$$I = Nev_d A \qquad \qquad \Phi_B = \int \vec{B} \cdot d\vec{A}$$

$$I = \frac{\Delta V}{R} \qquad \qquad \mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$$

$$R_{s} = \sum_{i} R_{i} \qquad \qquad \varepsilon = -L \frac{dI}{dt}$$

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i} \qquad U_L = \frac{1}{2}LI^2$$

$$P = I\Delta V$$

ADVANCED PLACEMENT PHYSICS C EQUATIONS

GEOMETRY AND TRIGONOMETRY

_				
К	ec	taı	ng	le

A = area

$$A = bh$$

C = circumference

Triangle

V = volume

S = surface area

$$A = \frac{1}{2}bh$$

$$b = base$$

Circle

$$h = \text{height}$$

 $A = \pi r^2$

$$\ell = length$$

$$w =$$
width

$$C = 2\pi r$$

$$r = \text{radius}$$

$$s = r\theta$$

$$s = arc length$$

$$s - r$$

$$\theta$$
 = angle

Rectangular Solid

$$V = \ell w h$$

Cylinder

$$V = \pi r^2 \ell$$

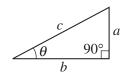
$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle


$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln ax) = \frac{1}{x}$$

$$\frac{d}{dx}[\sin(ax)] = a\cos(ax)$$

$$\frac{d}{dx}[\cos(ax)] = -a\sin(ax)$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \frac{dx}{x+a} = \ln|x+a|$$

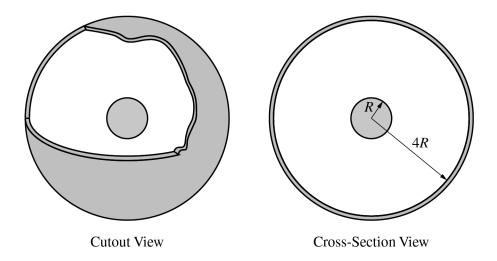
$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$

VECTOR PRODUCTS

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$\left| \vec{A} \times \vec{B} \right| = AB \sin \theta$$


Begin your response to **QUESTION 1** on this page.

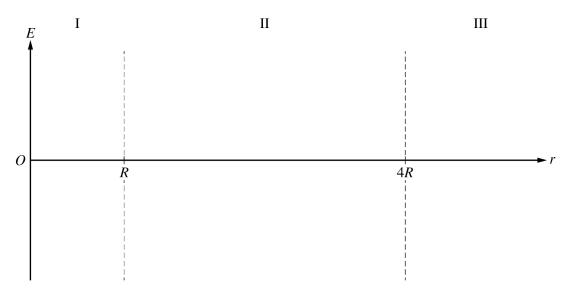
PHYSICS C: ELECTRICITY AND MAGNETISM SECTION II

Time—45 minutes

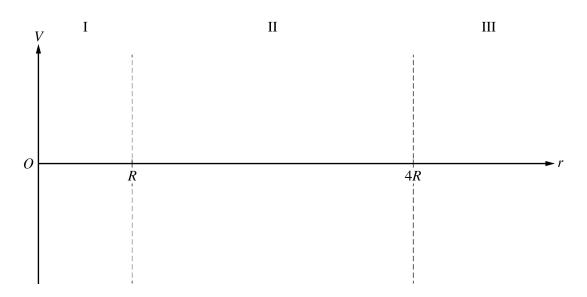
3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part.

Note: Figures not drawn to scale.


- 1. A nonconducting sphere of uniform volume charge density is surrounded by a thin concentric conducting spherical shell, as shown in the cutout view. The sphere has a charge of -Q and the shell has a charge of +3Q. The radii of the inner sphere and spherical shell are R and 4R, respectively, as shown in the cross-section view.
 - (a) Determine the charge on the outer surface of the shell.

Continue your response to QUESTION 1 on this page.
(b) Using Gauss's law, derive an expression for the electric field a distance r from the center of the sphere for $r < R$. Express your answer in terms of Q , R , r , and physical constants, as appropriate.
(c) The magnitude of the electric field at $r = R$ is $8N/C$. Calculate the value of the electric field at $r = 2R$.
(e) 210 1111g.1100 c = 11111 = 11111 = 11111 = 11111 = 1111 = 1111 = 1111 = 1111 = 1111 = 1111 = 11111 = 1111 = 1111 = 11
(d) Derive an expression for the absolute value of the potential difference between the outer surface of the sphere and the inner surface of the shell. Express your answer in terms of Q , R , and physical constants, as appropriate.
CO ON TO THE NEVT DACE
GO ON TO THE NEXT PAGE.


Continue your response to QUESTION 1 on this page.

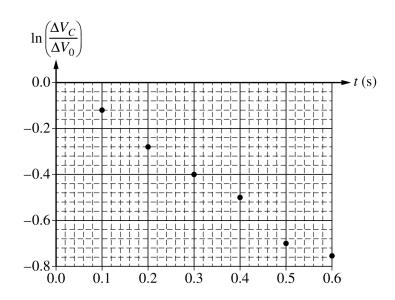
(e)

i. On the following axes that include regions I, II, and III, sketch a graph of the electric field E as a function of the distance r from the center of the sphere.

ii. On the following axes that include regions I, II, and III, sketch a graph of the electric potential V as a function of the distance r from the center of the sphere.

Begin your response to QUESTION 2 on this page.

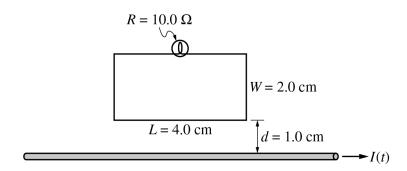
2. The plates of a certain variable capacitor have an adjustable area. An experiment is performed to study the potential difference across the capacitor as it discharges through a resistor. A circuit is to be constructed with the following available equipment: a single ideal battery of potential difference ΔV_0 , a single voltmeter, a single resistor of resistance R, a single uncharged variable capacitor set to capacitance C, and one or more switches as needed.


(a) Using the symbols shown, draw a schematic diagram of a circuit that can charge the capacitor and may also be used to study the potential difference across the capacitor as it discharges through the resistor.

The capacitor is fully charged by the battery. At time t = 0, the capacitor starts discharging through the resistor.

(b) Show that the potential difference ΔV_C across the capacitor as a function of time t is $\Delta V_C(t) = \Delta V_0 e^{-\frac{t}{RC}}$ as the capacitor discharges.

Continue your response to QUESTION 2 on this page.

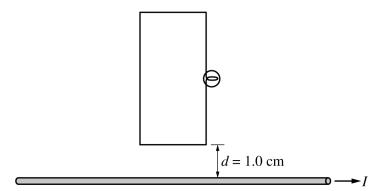

(c) The experiment is performed using a resistor of $R=150\,\mathrm{k}\Omega$. Data for the potential difference ΔV_C across the capacitor as a function of t are recorded and a plot of $\ln\left(\frac{\Delta V_C}{\Delta V_0}\right)$ as a function of t is created on the graph below.

- i. Draw the best-fit line for the data.
- ii. Using the best-fit line, calculate a value for the unknown capacitance C.

	Continue your response to QUESTION 2 on this page.
Would the slop	is adjusted so that the surface area of the plates is increased, and the experiment is repeated. be of the best-fit line in the second experiment be more steep, less steep, or unchanged compared the best-fit line in part (c)?
More steep	Less steep Unchanged
Briefly justify you	r answer.
	ry is then replaced with a non-ideal battery with internal resistance r , and the experiment is
repeated.	
_	of the graph in this final experiment change compared to the graph in part (c)?
Yes	No
Briefly justify you	r answer.
	cal intercept of the graph in this final experiment change compared to the graph in part (c)?
Yes	No
Briefly justify you	r answer.
	GO ON TO THE NEXT PAGE

Begin your response to **QUESTION 3** on this page.

- 3. A lightbulb of resistance $R = 10.0 \,\Omega$ is connected to a rectangular loop of wire of negligible resistance near a very long current-carrying wire. The rectangular loop has a length $L = 4.0 \,\mathrm{cm}$ and a width $W = 2.0 \,\mathrm{cm}$ and is positioned so one of the longer sides of the loop is a distance $d = 1.0 \,\mathrm{cm}$ above and parallel to the long wire, as shown. The current in the long wire is initially flowing to the right and is given by I(t) = C Dt, where $C = 10.0 \,\mathrm{A}$ and $D = 2.0 \,\mathrm{A/s}$. At time $t = 5.0 \,\mathrm{s}$, the current in the long wire is instantaneously zero as the current changes direction.
 - (a) What is the direction, if any, of the magnetic field produced by the induced current in the rectangular loop as the current in the long wire changes direction?


___ Into the page ___ Out of the page ___ No direction, because the field is zero

Justify your answer.

(b) Calculate the magnetic flux through the loop due to only the long wire at time t = 3.0 s.

Continue your response to QUESTION 3 on this page.	
(c) Calculate the current through the lightbulb at time $t = 3.0 \text{ s}$.	
(d) A group of students attempts to experimentally verify whether the current through the lightbulb is consisten with the current calculation from part (c). The current in the rectangular loop is measured to be greater than the current calculated in part (c). Which of the following could explain this discrepancy? Select one answer	ı
 The students did not account for Earth's magnetic field. The rectangular loop is tilted and is not in the same plane as the wire. The resistance of the lightbulb is greater than the recorded value. The long side of the rectangular loop is shorter than the recorded value. The current in the long wire changes at a faster rate than expected. 	
Briefly justify your answer.	
GO ON TO THE NEXT PA	AGE.

Continue your response to QUESTION 3 on this page.

(e) Later, the same rectangular loop with lightbulb is rotated such that a short side of the loop is 1.0 cm above and parallel to the long current-carrying wire, as shown. The current in the wire is again initially flowing from left to right and given by I(t) = C - Dt, where $C = 10.0 \,\text{A}$ and $D = 2.0 \,\text{A/s}$. The current through the lightbulb in the loop's new orientation at time $t = 3.0 \,\text{s}$ is I_2 . Which of the following correctly relates the current I_2 to I_1 , the current through the lightbulb in part (c)?

$$\underline{\hspace{1cm}} I_2 < I_1 \qquad \underline{\hspace{1cm}} I_2 = I_1 \qquad \underline{\hspace{1cm}} I_2 > I_1$$

Justify your answer.

AP® Physics C: Electricity and Magnetism 2022 Free-Response Questions
STOP
END OF EXAM