

AP® COMPUTER SCIENCE A
2012 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first, which always takes precedence. Penalty points can only be deducted in a part of the
question that has earned credit via the question-specific rubric. No part of a question — (a), (b), or (c) — may have a negative point
total. A given penalty can be assessed only once for a question, even if it occurs multiple times or in different parts of that
question.

1-Point Penalty

(w) Extraneous code that causes a side effect or prevents earning points in the rubric
(e.g., information written to output)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty

o Extraneous code that causes no side effect

o Extraneous code that is unreachable and would not have earned points in rubric

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared, provided that other variables are declared in some part

o private qualifier on local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (x • ÷ < > < > ≠)

o [] vs. () vs. <>

o = instead of == (and vice versa)

o Array/collection element access confusion ([] vs. get for r-values)

o Array/collection element modification confusion ([] vs. set for l-values)

o length/size confusion for array, String, and ArrayList, with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration, (e.g., int[size] nums = new int[size];)

o Missing ; provided that line breaks and indentation clearly convey intent

o Missing { } where indentation clearly conveys intent and { } are used elsewhere

o Missing () on parameter-less method or constructor invocations

o Missing () around if/while conditions

o Use of local variable outside declared scope (must be within same method body)

o Failure to cast object retrieved from nongeneric collection

* Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counterexample, note that if the code declares
“Bug bug;” and then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the reader to assume
the object instead of the class.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING GUIDELINES

Question 2: RetroBug (GridWorld)

Class: RetroBug 9 points

Intent: Define extension to Bug class that implements a restore method to revert to previous
location and direction

+1 Provides properly formed class header for RetroBug that extends Bug class

+1 Overrides at least one Bug method, other than constructor, and maintains all Bug
behaviors

+2 Saves state at beginning of act
+1 Remembers location or direction in RetroBug instance variable at beginning of

act method and nowhere else
(point awarded only if instance variable is explicitly declared)

+1 Remembers both location and direction in RetroBug instance variables

+5 Implements restore
+½ Provides correct method header: public void restore()
+½ Guards against any effect if called before first invocation of act
+1 Always restores remembered direction
+1 Moves to remembered location
+1 Moves if remembered location is empty (must check for empty location)
+1 Moves if remembered location is occupied only by a flower

(must check for flower at location)

Question-Specific Penalties
-1 (r) Use of "RetroBug." instead of "this."
-1 (v) Confused use of location and direction

(e.g., saved location used as direction and vice versa)
-1 (z) Attempts to return a value from restore
-0 Missing public qualifier on class header

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 CANONICAL SOLUTIONS

Question 2: RetroBug (GridWorld)

public class RetroBug extends Bug {
Location savedLocation;
int savedDirection;

public void act() {
savedLocation = getLocation();
savedDirection = getDirection();
super.act();

}

public void restore() {
if (savedLocation == null) return;
setDirection(savedDirection);
if (getGrid().get(savedLocation) == null

|| getGrid().get(savedLocation) instanceof Flower) {
moveTo(savedLocation);

}
}

}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING COMMENTARY

Question 2

Overview

This question involved reasoning in the context of the GridWorld case study and the design of a class
using inheritance, method overriding, and instance variables to maintain state. This problem tested
students’ knowledge of the Bug class, and both creating and overriding appropriate methods. Students
were required to create the RetroBug class, as a subclass of Bug, whose behavior included
remembering previous direction and location, as well as the means to restore previously remembered
values. Students had to override an appropriate method of the Bug class and write a new method. To be
successful in this problem, students needed to understand a bug’s behavior, the intended behavior of a
retro bug, declare instance variables to remember previous state, override the act method, and write a
restore method.

Sample: 2A
Score: 8.5 (rounded to 9)

The RetroBug class is properly declared and correctly extends the Bug class. There are instance
variables declared to store both the location and direction at the beginning of the act method call. The
restore method is declared correctly and always restores the direction to the remembered direction
stored in the instance variables. The restore method correctly checks the grid to see if the bug can
move to the remembered location. The missing parentheses in the call to getGrid are not penalized.

This student's solution is almost perfect but makes a fairly common error. It does not protect the
restore method from changing the object if the act method has not been called and so lost ½ point.

Sample: 2B
Score: 5.5 (rounded to 6)

This student's solution correctly remembers the state of the object but has difficulty restoring the object to
the remembered state.

The RetroBug class is properly declared and correctly extends the Bug class. There are instance
variables declared to store both the location and direction at the beginning of the act method call. The
restore method is declared correctly. However, there is no attempt to ensure that restore does
nothing if act has not been called, so ½ point was lost. The restore method only restores the
direction if the object also moves, so the student lost the point for always restoring the direction.

The student attempts to check if the remembered location is empty or contains a flower, but there are
errors in both of these checks, resulting in the loss of another 2 points. When checking if the location is
empty, the method checks the location, not the grid; in checking if there is a flower in the location, the
equality operator (==) is used instead of the instanceof operator.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING COMMENTARY

Question 2 (continued)

Sample: 2C
Score: 2.5 (rounded to 3)

This student's solution fails to remember the state of the object and so is unable to properly restore it.

The RetroBug class is properly declared and extends Bug correctly. There are no instance variables,
so the solution lost both points for correctly storing the direction and location. The solution did receive
credit for overriding the act method, even though it does not change the act method when it
overrides it.

The restore method is declared correctly. However, there is no attempt to guard the restore
method from changing the object if the act method has not been called, so ½ point was lost. When the
restore method tries to restore the location and direction, it uses variables declared locally in the
restore method, so there is no use of remembered values, and 2 points were lost for failing to restore
the direction and location. Checking for an empty location or a flower also relies on using a remembered
location, so these 2 points were also lost.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2012 GENERAL SCORING GUIDELINES
	1 -Point Penalty
	No Penalty

	2012 SCORING GUIDELINES
	Question 2: RetroBug (GridWorld)
	Class:
	Question-Specific Penalties

	2012 CANONICAL SOLUTIONS
	Question 2: RetroBug (GridWorld)

	2012 SCORING COMMENTARY
	Question 2
	Overview
	Sample: 2A
	Sample: 2B
	Sample: 2C

