

AP® COMPUTER SCIENCE A
2012 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first, which always takes precedence. Penalty points can only be deducted in a part of the
question that has earned credit via the question-specific rubric. No part of a question — (a), (b), or (c) — may have a negative point
total. A given penalty can be assessed only once for a question, even if it occurs multiple times or in different parts of that
question.

1-Point Penalty

(w) Extraneous code that causes a side effect or prevents earning points in the rubric
(e.g., information written to output)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty

o Extraneous code that causes no side effect

o Extraneous code that is unreachable and would not have earned points in rubric

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared, provided that other variables are declared in some part

o private qualifier on local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (x • ÷ < > < > ≠)

o [] vs. () vs. <>

o = instead of == (and vice versa)

o Array/collection element access confusion ([] vs. get for r-values)

o Array/collection element modification confusion ([] vs. set for l-values)

o length/size confusion for array, String, and ArrayList, with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration, (e.g., int[size] nums = new int[size];)

o Missing ; provided that line breaks and indentation clearly convey intent

o Missing { } where indentation clearly conveys intent and { } are used elsewhere

o Missing () on parameter-less method or constructor invocations

o Missing () around if/while conditions

o Use of local variable outside declared scope (must be within same method body)

o Failure to cast object retrieved from nongeneric collection

* Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counterexample, note that if the code declares
“Bug bug;” and then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the reader to assume
the object instead of the class.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING GUIDELINES

Question 1: Climbing Club

Part (a) addClimb (append) 2 points

Intent: Create new ClimbInfo using data from parameters and append to climbList

+1 Creates new ClimbInfo object using parametric data correctly

+1 Appends the created object to climbList
(no bounds error and no destruction of existing data)
(point not awarded if inserted more than once)

Part (b) addClimb (alphabetical) 6 points

Intent: Create new ClimbInfo object using data from parameters and insert into climbList,
maintaining alphabetical order

+1 Creates new ClimbInfo object(s), using parametric data correctly

+1 Compares peakName value with value retrieved from object in list (must use getName)

+1 Inserts object into list based on a comparison (other than equality) with object in list
(point not awarded if inserted more than once)

+1 Compares parametric data with all appropriate entries in climbList (no bounds error)

+1 Inserts new ClimbInfo object into climbList (no destruction of existing data)

+1 Inserts new ClimbInfo object into climbList once and only once in maintaining
alphabetical order (no destruction of existing data)

Part (c) analysis 1 point

Intent: Analyze behavioral differences between append and alphabetical versions of
addClimb

+1 (i) NO (ii) YES Both must be answered correctly

Question-Specific Penalties

-1 (z) Attempts to return a value from addClimb

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 CANONICAL SOLUTIONS

Question 1: Climbing Club

Part (a):

public void addClimb(String peakName, int climbTime) {
this.climbList.add(new ClimbInfo(peakName, climbTime));

}

Part (b):

public void addClimb(String peakName, int climbTime) {
for (int i = 0; i < this.climbList.size(); i++) {

if (peakName.compareTo(this.climbList.get(i).getName()) <= 0) {
this.climbList.add(i, new ClimbInfo(peakName, climbTime));
return;

}
}
this.climbList.add(new ClimbInfo(peakName, climbTime));

}

Part (c):

NO

YES

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING COMMENTARY

Question 1

Overview

This question involved object construction, list access and modification, string comparison, and
implications of design choices. Students were asked to implement the method addClimb using two
different specifications of its behavior. In both cases, the main action of addClimb was to use its
parameters to create a new object of type ClimbInfo and add that object to the instance variable
climbList. In part (a) students were required to implement addClimb such that the new object was
simply appended to climbList. This could be accomplished by invoking the one-parameter add
method of the List interface. In part (b) students were required to implement addClimb such that
the new object was inserted into climbList so as to maintain alphabetical order of the elements. This
could be accomplished by searching the list to determine the location at which the element should be
inserted and invoking the two-parameter add method of the List interface. Part (c) provided an
implementation of the method distinctPeakNames that traverses climbList and attempts to
determine the number of distinct values of names of the peaks. Students were asked whether that
implementation of distinctPeakNames works as intended when addClimb stored the objects as in
part (a) and in part (b).

Sample: 1A
Score: 8

In part (a) the student correctly creates a new ClimbInfo object using the method’s parameters as the
arguments to the ClimbInfo constructor. The new object is then appended to the list via the one-
argument version of the add method. The capitalization of “New” (which should be “new”) is ignored
in scoring, because unambiguous spelling/case discrepancies are not penalized under the General Scoring
Guidelines. The student earned both points in part (a).

In part (b) the student attempts to determine where a new ClimbInfo object belongs in climbList,
and then creates and inserts it. The student uses a for loop to compare the peakName parameter with
the peak name of each object in the list. The compareTo method for String objects is used to
determine if the new object belongs before the current object in the list. If the new object does belong
before the current object, that position is recorded in a local variable (addPosition), which was
initialized to the size of the list.

After the loop, the new object is added via the two-argument add method, in which the first parameter
indicates the insert position in the list. For an empty list, the size is 0, and thus the object is correctly
inserted at index 0. If the new object belongs at the end of the list, the object is correctly appended.
However, if the new object does not belong at the end of the list, there is a problem. Once the loop finds an
object in the list that belongs after the new object, it correctly records that position, but the loop continues.
Because all subsequent objects in the list also belong after the new object, the local variable gets updated
for each of these additional objects. This results in the new object being inserted immediately before the
last object in the list. The student earned 5 points in part (b).

In part (c) the student correctly indicates that the distinctPeakNames implementation works only if the
list is ordered. The addClimb specification for part (a) does not do this, whereas the part (b) specification
does guarantee an ordered list. The student earned the point for part (c).

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING COMMENTARY

Question 1 (continued)

Sample: 1B
Score: 6

In part (a) the student creates a new ClimbInfo object using the method’s parameters as the
arguments to the ClimbInfo constructor. The new object is then appended to the list using the one-
argument version of the add method. The student earned both points in part (a).

In part (b) the student creates a new ClimbInfo object, attempts to determine where it belongs in
climbList, and inserts it into the list. The response uses a for loop to compare the peakName
parameter with the peak name of each object in the list. The compareTo method for String objects
is used to determine if the new object belongs before the current object in the list. If the new object does
belong before the current object, the new object is inserted. However, because the loop continues, the
next pass through the loop will compare the new object to the same object it was compared to in the
previous iteration, resulting in the new object being inserted multiple times. This process will continue
indefinitely. Neither the “Inserts object into list based on a comparison” point nor the “Inserts new
ClimbInfo object into climbList once and only once” point can be earned when there are multiple
inserts.

After the loop, the student checks to see if the new object belongs at the end of the list, and if so, appends
it. However, if the list is empty, this check will cause an exception (accessing the object in position -1) and
the new object will not get inserted. Neither the “Inserts object into ClimbList” point nor the “Inserts
object into climbList once and only once” point can be earned when there is a missing insert. The
student earned 3 points for part (b).

In part (c) the student correctly indicates that the distinctPeakNames implementation works only if the
list is ordered. The addClimb specification for part (a) does not do this, whereas the part (b) specification
does guarantee an ordered list. The student earned the point for part (c).

Sample: 1C
Score: 1

In part (a) the student incorrectly creates a new ClimbInfo object, because the parameter list includes
the types of arguments, as a formal parameter list would. The object is then added to the list, but not after
all previous objects. The first argument to the add method indicates the position in the list. Because
climbList.size()- 1 is used as that argument, the new object is inserted before the last object,
making this new object the penultimate object in the list. Additionally, if the list is empty at the beginning
of the method, there will be an exception when it tries to add at index -1. No points were earned in part (a).

In part (b) the student attempts to create a new ClimbInfo object, determine where it belongs in
climbList, and then insert it. The student incorrectly creates a new ClimbInfo object, because the
parameter list includes the types of arguments, as a formal parameter list would.

The student uses a for loop to compare the peak name of each object in the list with the peakName
parameter. The compareTo method for String objects is used in an attempt to determine if the new
object belongs before the current object in the list. However, the compare < 0 test should be
compare > 0. When the if test is true, an add method is called, but the arguments to the add
method do not match either of the two List add methods. Both of the arguments are objects, so it is

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2012 SCORING COMMENTARY

Question 1 (continued)

unclear which object is intended to be inserted into the list. Also, because the first argument accesses the
object at index i+1, an exception will occur when i equals climbList.size()-1. If the add
method had the correct parameters, the loop would continue after the object is inserted into the list, and
additional calls to the add method could occur. This would result in the new object being inserted more
than once. Neither the “Inserts object based on comparison” point nor the “Inserts object into
climbList once and only once” point can be earned when there are multiple inserts.

If the list was empty when the method began, the for loop will not execute, and no add will occur.
Neither the “Inserts object into ClimbList” point nor the “Inserts object into climbList once and
only once” point can be earned when there is a missing insert. The student earned 1 point for part (b).

In part (c) the distinctPeakNames implementation works only if the list is ordered. The student
incorrectly indicates that the addClimb specification for part (a) guarantees this, whereas the part (b)
specification does not. In fact, the part (b) specification is the one that enables distinctPeakNames to
work correctly, and the part (a) specification does not. No points were earned in part (c).

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2012 GENERAL SCORING GUIDELINES
	1 -Point Penalty
	No Penalty

	2012 SCORING GUIDELINES
	Question 1: Climbing Club
	Part (a)
	Part (b)
	Part (c)
	Question-Specific Penalties

	2012 CANONICAL SOLUTIONS
	Question 1: Climbing Club
	Part (a):
	Part (b):
	Part (c):

	2012 SCORING COMMENTARY
	Question 1
	Overview
	Sample: 1A
	Sample: 1B
	Sample: 1C

