AP® CHEMISTRY 2012 SCORING GUIDELINES

Question 5 (8 points)

Process	$\Delta H^{\circ} \text{ (kJ/mol}_{rxn})$
$Br_2(l) \rightarrow Br_2(g)$	30.91
$I_2(s) \rightarrow I_2(g)$	62.44

At 298 K and 1 atm, the standard state of Br_2 is a liquid, whereas the standard state of I_2 is a solid. The enthalpy changes for the formation of $Br_2(g)$ and $I_2(g)$ from these elemental forms at 298 K and 1 atm are given in the table above.

(a) Explain why ΔH° for the formation of $I_2(g)$ from $I_2(s)$ is larger than ΔH° for the formation of $Br_2(g)$ from $Br_2(l)$. In your explanation identify the type of particle interactions involved and a reason for the difference in magnitude of those interactions.

Two reasons may be given. The first reason is that London dispersion forces, the only intermolecular forces involved for both of these nonpolar molecules, will be stronger in I_2 because of its greater number of electrons and larger size. The second reason is that since ΔH of sublimation is approximately ΔH of fusion plus ΔH of vaporization, $I_2(g)$ should have a larger ΔH° of formation since it involves sublimation, whereas $Br_2(g)$ formation involves only vaporization.

1 point is earned for identifying London dispersion forces.

1 point is earned for either of the following: explaining the reason for the greater LDFs in I_2

OR

stating that the enthalpy change from solid to gas is greater than the enthalpy change from liquid to gas.

- (b) Predict which of the two processes shown in the table has the greater change in entropy. Justify your prediction.
- $I_2(s) \rightarrow I_2(g)$ should have the greater change in entropy. The sublimation of I_2 may be thought of as a combination of fusion and vaporization. The conversion from solid to liquid would involve an increase in entropy, as would the conversion from liquid to gas. Br_2 is only undergoing the liquid to gas conversion and so will undergo a smaller entropy increase.

1 point is earned for the correct choice with a correct explanation.

AP® CHEMISTRY 2012 SCORING GUIDELINES

Question 5 (continued)

(c) $I_2(s)$ and $Br_2(l)$ can react to form the compound IBr(l). Predict which would have the greater molar enthalpy of vaporization, IBr(l) or $Br_2(l)$. Justify your prediction.

IBr(*l*). Two reasons may be given. First, IBr is polar, and dipole-dipole forces would tend to increase the enthalpy of vaporization. Second, IBr should have stronger London dispersion forces because of the greater number of electrons in the larger IBr molecule.

1 point is earned for the correct choice with either or both of the acceptable reasons.

An experiment is performed to compare the solubilities of $I_2(s)$ in different solvents, water and hexane (C_6H_{14}) . A student adds 2 mL of H_2O and 2 mL of H_3O and 2 mL of H_4O are immiscible, two layers are observed in the test tube. The student drops a small, purple crystal of H_4O into the test tube, which is then corked and inverted several times. The H_4O layer remains virtually colorless.

(d) Explain why the hexane layer is light purple while the water layer is virtually colorless. Your explanation should reference the relative strengths of interactions between molecules of I_2 and the solvents H_2O and C_6H_{14} , and the reasons for the differences.

The hexane layer is purple because most of the I_2 is dissolved in it. The entrance of the I_2 into water requires disruption of the hydrogen bonds in water, which are much stronger than the London dispersion forces in hexane. Meanwhile, the London dispersion forces between I_2 and hexane would be stronger than the London dispersion forces between I_2 and water. (Water and I_2 can also interact through a dipole-induced dipole force, but this attraction is insufficient to overcome the other differences noted above.)

- 1 point is earned for recognizing from the experimental observations that the iodine dissolved in the hexane.
- 1 point is earned for a correct explanation referencing the differences between water and hexane in their interactions with I₂.
- (e) The student then adds a small crystal of KI(s) to the test tube. The test tube is corked and inverted several times. The I^- ion reacts with I_2 to form the I_3^- ion, a linear species.
 - (i) In the box below, draw the complete Lewis electron-dot diagram for the I_3^- ion.

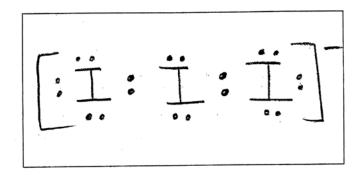
[:<u>|</u>:<u>|</u>:]_

1 point is earned for a correct Lewis diagram.

AP® CHEMISTRY 2012 SCORING GUIDELINES

Question 5 (continued)

(ii) In which layer, water or hexane, would the concentration of I_3^- be higher? Explain.


 I_3^- would be more soluble in water because of the ion-dipole interactions that would occur between the ions and the polar water molecules. No such interactions are possible in the nonpolar hexane.

1 point is earned for the correct choice and explanation.

B B B B B B B B B B B B

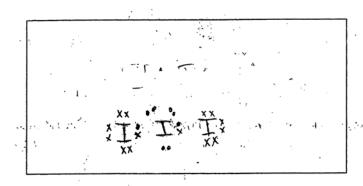
- (e) The student then adds a small crystal of KI(s) to the test tube. The test tube is corked and inverted several times. The I⁻ ion reacts with I₂ to form the I₃⁻ ion, a linear species.
 - (i) In the box below, draw the complete Lewis electron-dot diagram for the I_3^- ion.

- (ii) In which layer, water or hexane, would the concentration of I₃⁻ be higher? Explain.
- a) The OH of for the formation of Iz(a) from Iz(s) Alto for the formation of from Brz(l) Br2 (9) because of molecules' of London st renath these variations dispersion forces create temporary forces These dispersion Iz, when it between mdecules dipoles molecules of when it is a also between Brz and the forces, the more energy needed stronger liquid. The the the forces Keeping substances overcome aaseous Because has more their entenna dispersion electrons London does than BY2. tendency to a greater has stronaer and are the formation solid. areater.

Unauthorized copying or reuse of any part of this page is illegal.

ADDITIONAL PAGE FOR ANSWERING QUESTION 5

- I2(9) has a greater change Entropy is a measurement system, and solids have less entropy than have less entropy than liquids which gases. Because the initial state of Brz (leiguid) already has state entropy than the initial ot the magnitude 0+ the change m for Iz(s) entropy to I2(9) must areater. be
- IBr(l) would have a greater molar heat its liquid form, it also has vaporization because m its indecalls from forces keeping dipole-dipole caused from vaporizing. Dipole-dipole forces are: differences in electronegativity and are a shomaer intermolecular the London dispersion forces force than Thus, the AH of vaporization for IBr Brz. with to overcome the stronger forces
- The hexane layer pumple because is liant come of the Iz dissolved into the hexane. a nonpolar solvent, molecule, and the only Iz is a nonpolar forces with Is involved London dispersion forces, are which relatively weak and make are Konpdar readily soluble in solvents C6H14. H20 On the other polar hand solvent with 15 a



ADDITIONAL PAGE FOR ANSWERING QUESTION 5

hydrogen bonding ble of the difference in electronecritisty
between the 0 & H atoms in its molecules. Hydrogen bonds
are a force of greater strength compared to dispersion
forces and therefore, water cannot dissolve Iz. This
explains why the H2O remained colorless, the H2O
nearly repelled the nonpolar Iz.
e) (ii) The concentration of I3 would be higher in
the H2O because of H2O's polarity. The water
molecule, because of the difference in
electron egativity between 0 & H, is a polar
molecule with a + and - ends. It, as a
result, will dissolve more of the negatively
charged Is ion than the nonpolar hexane.

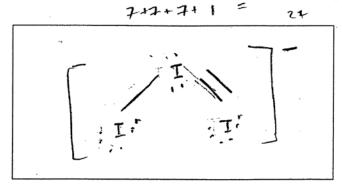
B B B B B B B B B B B 55

- (e) The student then adds a small crystal of KI(s) to the test tube. The test tube is corked and inverted several times. The I⁻ ion reacts with I₂ to form the I₃⁻ ion, a linear species.
 - (i) In the box below, draw the complete Lewis electron-dot diagram for the I_3^- ion.

(ii) In which layer, water or hexane, would the concentration of I₃⁻ be higher? Explain.

as The enthalpy for the todine reaction is greater because it Jumps
two phases, Because it is going from a Solid to a gas
The enthalpy for the tradine reaction is greater because it Jumps two phases. Because it is going from a Solid to a gas it requires more neaf. Brz isonly Changing to Liquidigas From liquid.
& I believe the Iz reaction process will have a greated entropy
because it storts from a large stable state. It changes from
a very orderly state to a chaptic state. The Br. Changes
from an already unorderly state to the Chaptic State.
The drange is more Dynamic in the Iz.
<u> </u>
co. Bross a more stable compound and the bonds would require
none energy tes break Giving it a higher enthalpy.
DIZ is a symmetrical molecule, making it have no Dipole moment.
I, + dexane are both non-polar the Non-polar cannot
nix with or october into the other substances.

Unauthorized copying or reuse of any part of this page is illegal.


B B B B B B B B B B B B B 5 B A

(mater is polar	ADDITIONAL PAGE FOR ANSWERING QUESTION 5
	Hexane accepts the In + Sissolves it because
of its non-pola	
01 113 1011 pan	
<u>(i)</u>	
ii The C.	of Is would be higher in the Had
11. IN COAC	or 13 competition course it to love paras
Layer because	e it is Asymmetrical causing it to be polar polar substances white Hexane does not.
T/20 10 1050 NES	popul supertices cuine presine sous her.
	the contract of the contract o
	
	
· · ·	
.,	
· · · · · · · · · · · · · · · · · · ·	
	en e
the second second	De la contraction de La contraction de la
	and the second of the second o
*	The second secon

A grade waters of an of

B B B B B B B B B B 5C

- (e) The student then adds a small crystal of KI(s) to the test tube. The test tube is corked and inverted several times. The I^- ion reacts with I_2 to form the I_3^- ion, a linear species.
 - (i) In the box below, draw the complete Lewis electron-dot diagram for the I_3^- ion.

- (ii) In which layer, water or hexane, would the concentration of I₃⁻ be higher? Explain.
- a) Br, is vaporizing from a liquid to a gas; in a liquid the particles are somewhat in motion and apart from one another, so it takes a smaller amount of energy to change the liquid particles into gas particles. The particles of Iz in a solid state are packed together and are not in much motion; therefore, we need more energy to set thuse packed particles into italist motion and spread out the particles.

 b) Iz (s) > Iz(g) has the greater change of entropy. Entropy measures disorder in a solid has no disorder while a gas has plenty of disorder, so this change in entropy would be greater than from a liquid, which has some disorder, to a family.

 c) I Br (2) because it is bigger and more massive than Brz (1); therefore, more energy is required to set I Br into fast motion than Brz (1), which is smaller.

BBBBBBBBBBBB

ADDITIONAL PAGE FOR ANSWERING QUESTION 5

d) Iz and CoHIH are non polar molecules, so it would easily
dissolve in CoH14. However, water is nonpolar, so it is
difficult to dissolve Iz into H20.
e) Q 100x at box
(ii) water because Is is polar, so the Is would dissolve in H2O better
mand alscolve in H.O. better
`

AP® CHEMISTRY 2012 SCORING COMMENTARY

Question 5

Overview

This question asked students to explain the behavior of various aggregations of iodine and bromine in terms of enthalpy and entropy changes and solubility tendencies. In addition, they were asked to represent the I_3^- ion as a Lewis electron-dot diagram. Part (a) asked students to explain why the enthalpy of formation of $I_2(g)$ exceeds that of $Br_2(g)$. They were instructed to identify the type of particle interactions involved and to provide a reason for the difference in magnitude of these interactions. Part (b) asked students to predict which of the two processes in part (a) would have a greater change in entropy and to provide a justification for their prediction. Part (c) asked students to predict whether IBr(l) or $Br_2(l)$ would have a greater molar enthalpy of vaporization and to justify their predictions. Part (d) described an experimental procedure and observation involving the combination of water, hexane (C_6H_{14}) , and a crystal of solid I_2 . Students were asked to explain the observation and to reference the relative strengths of interactions between the two solvents and the crystal. In part (e) students were told a small crystal of KI(s) was added to the combination of chemicals described in part (d). In part (e)(i) students were asked to draw the complete Lewis electron-dot diagram for the I_3^- ion. Finally, in part (e)(ii) they were asked to state which solvent layer would contain the higher concentration of I_3^- and to explain why.

Sample: 5A Score: 7

Part (e)(i) did not earn the point because the central iodine atom is missing one lone pair of electrons.

Sample: 5B Score: 5

Part (a) earned 1 point for the statement that the enthalpy change from a solid to a gas requires more energy (heat) than the change from a liquid to a gas. Part (c) did not earn the point because the Br_2 is incorrectly identified as having a greater molar enthalpy. Part (e)(ii) did not earn the point because the response states that I_3^- is a polar species.

Sample: 5C Score: 3

Part (a) earned 1 point for the statement that the vaporization of Br_2 involves a smaller enthalpy change than the conversion of I_2 solid to a gas. Part (c) did not earn the point because there is no mention of London dispersion or dipole-dipole forces. Part (d) earned 1 point for indicating that the I_2 would easily dissolve in the $\mathrm{C}_6\mathrm{H}_{14}$. The second point was not earned because the student incorrectly states that water is nonpolar. Part (e)(i) did not earn the point because the Lewis structure includes a double bond where there should not be one. Part (e)(ii) did not earn the point because the I_3^- ion is identified as polar.