
AP® COMPUTER SCIENCE A
2011 GENERAL SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question-specific rubric first; the question-specific rubric always takes precedence.
Penalties: The penalty categorization below is for cases not covered by the question-specific rubric. Points can only be
deducted in a part of the question that has earned credit via the question-specific rubric, and no section may have a negative
point total. A given penalty can be assessed only once in a question, even if it occurs on different parts of that question. A
maximum of 3 penalty points may be assessed over the entire question.

Nonpenalized Errors

spelling/case discrepancies if no
ambiguity*

local variable not declared if other
variables are declared in some part

use of keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array,
String, and ArrayList, with or
without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without
parens;
e.g., new Critter;

missing () on parameter-less method
call

missing () around if/while
conditions

missing ; when majority are present

missing public on class or
constructor header

extraneous [] when referencing entire
array

[i,j] instead of [i][j]

extraneous size in array declaration,
e.g., int[size] nums = new
int[size];

Minor Errors (½ point)

confused identifier (e.g., len for
length or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use of equals or compareTo
method on primitives, e.g., int x;
…x.equals(val)

array/collection access confusion
([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

Applying Minor Penal ties
(½ point):
A minor infraction that occurs
exactly once when the same
concept is correct two or
more times is regarded as an
oversight and not penalized.
A minor penalty must be
assessed if the item is the
only instance, one of two,
or occurs two or more
times.

Major Errors (1 point)

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of
variable identifier; e.g., Bug.move()
instead of aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by
parameter)

use of class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be
unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a counterexample, note that if
a student declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the
reader to assume the object instead of the class.

2011 SCORING GUIDELINES
AP® COMPUTER SCIENCE A

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Cipher

Part (a) fillBlock 3½ points

Intent: Fill letterBlock in row-major order from parameter; pad block or truncate string as
needed

 +½ Copies at least one substring from parameter to letterBlock
+½ Completely fills letterBlock from parameter if possible

(no bounds errors in letterBlock or parameter)
+1 Results in a distribution of all consecutive one-character substrings from parameter

to letterBlock (ignores surplus characters)
+½ Copies these one-character substrings from parameter to letterBlock in such a

way that the result is in row-major order
+1 Pads letterBlock with "A" if and only if parameter is shorter than block size

Part (b) encryptMessage 5½ points

Intent: Return encrypted string created by repeatedly invoking fillBlock and
encryptBlock on substrings of parameter and concatenating the results

 +2 Partition parameter
+½ Returns the empty string if the parameter is the empty string
+½ Creates substrings of parameter that progress through the parameter

string (can overlap or skip)
+1 Processes every character in parameter exactly once (no bounds errors)

+3 Fill and encrypt a block, concatenate results
+½ Invokes fillBlock with parameter or substring of parameter
+½ Invokes fillBlock on more than one substring of parameter
+½ Invokes encryptBlock after each invocation of fillBlock
+½ Concatenates encrypted substrings of parameter
+1 Builds complete, encrypted message

+½ Return resulting built string

Question-Specific Penalties

Wi –1½t Use of identifier with no apparent resemblance to letterBlock for two-dimensional
array

h

AP® COMPUTER SCIENCE A

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

2011 CANONICAL SOLUTIONS

Question 4: Cipher

Part (a):
private void fillBlock(String str) {
 int pos = 0;
 for (int r = 0; r < this.numRows; r++) {
 for (int c = 0; c < this.numCols; c++) {
 if (pos < str.length()) {
 this.letterBlock[r][c] = str.substring(pos, pos+1);
 pos++;
 } else {
 this.letterBlock[r][c] = "A";
 }
 }
 }
}

// Alternative solution
private void fillBlock(String str) {
 for (int r = 0; r < this.numRows; r++) {
 for (int c = 0; c < this.numCols; c++){
 if (str.length() > (c + (r * this.numCols))) {
 this.letterBlock[r][c] = str.substring(c + r * this.numCols,
 1 + c + r * this.numCols);
 } else {
 this.letterBlock[r][c] = "A";
 }
 }
 }
}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: Cipher (continued)

Part (b):
public String encryptMessage(String message) {
 String encryptedMessage = "";
 int chunkSize = this.numRows * this.numCols;
 while (message.length() > 0) {
 if (chunkSize > message.length()) {
 chunkSize = message.length();
 }
 fillBlock(message);
 encryptedMessage += encryptBlock();
 message = message.substring(chunkSize);
 }
 return encryptedMessage;
}

// Alternative solution
public String encryptMessage(String message) {
 if (message.length() == 0) return "";
 fillBlock(message);
 if (message.length() <= this.numRows * this.numCols) {
 return encryptBlock();
 }
 return (encryptBlock() +
 encryptMessage(message.substring(this.numRows * this.numCols)));
}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

2011 SCORING COMMENTARY

Question 4

Overview

This question focused on using two-dimensional arrays and utilizing abstractions. The question required
students to manipulate Strings and to demonstrate understanding of how class fields interact. Students were
provided with a partial class definition for the RouteCipher class, which indicated three relevant fields (a
2D array and the two dimensions of the array) and three methods, two of which were to be written by the
student (fillBlock and encryptMessage). The third method, encryptBlock, was understood to
be already implemented as per the given documentation and ready to be utilized.

Part (a) asked students to write the method fillBlock, whose task was to break apart a String into a
sequence of one-character substrings and put them into a 2D array in row-major order. Nested for-loops and
use of the substring method (of the String class) were the most common ways this was achieved.

Complications arose when the number of characters in the String did not match the size of the 2D
letterBlock. Per the instructions, if there were extra characters in the String, they were to be ignored. If
there were not enough characters in the String, the rest of the spots in the letterBlock were to be filled
with the String "A" — a process called “padding.”

Part (b) asked students to write the method encryptMessage, whose task was to take a message String
and encrypt it via the fillBlock method written in part (a) and the encryptBlock method that was
given to them. This required breaking the String into appropriately sized chunks that could be sent to
fillBlock, encrypted by encryptBlock (which returned the encrypted message), and then combined
into one String that contained the entire message in encrypted form.

Sample: 4A
Score: 8

In part (a) the student correctly implements the fillBlock method. If the length of the parameter str
is less than or equal to the number of cells in letterBlock, all consecutive one-character substrings of
str are correctly copied into the letterBlock array. The copying is done in row-major order. All
unfilled cells in the letterBlock array are filled with "A". If the length of str is greater than the
number of cells in letterBlock, the excess one-character substrings of str are ignored. Part (a) earned
all 3½ points.

In part (b) the student does not implement the encryptMessage method correctly. If the parameter
message is the empty string, the empty string is returned. Otherwise, message is partitioned into
disjoint substrings. The number of partitions depends on the length of message. If the length of the last
partition is less than numRows*numCols, then the while loop variable is not incremented, which results in
an infinite loop. Ignoring this error, each partition is passed to fillBlock, and then encryptBlock is
called to encrypt the partition. All encrypted partitions are concatenated in order, and the result of the
concatenation is returned. Part (b) earned 4½ points.

AP® COMPUTER SCIENCE A
2011 SCORING COMMENTARY

Question 4 (continued)

Sample: 4B
Score: 6

In part (a) the student does not implement the fillBlock method correctly. One-character substrings
of the parameter str are copied into all cells of the letterBlock array in row-major order. If the
length of str is greater than or equal to numRows*numCols, then the inside loop causes only the one-
character substring calculated last to be copied into all cells of letterBlock. If the length of str
is less than numRows*numCols, then "A" is copied into all cells of letterBlock. Part (a) earned
1½ points.

In part (b) the student does not implement the encryptMessage method correctly. If the parameter
message is the empty string, then the empty string is returned, because the loop does not execute.
Otherwise message is partitioned into disjoint substrings. The number of partitions depends on the length
of message. If the length of final partition of message is less than numRows*numCols, then a bounds
error occurs in the substring call. Ignoring this error, each partition is passed to fillBlock, and then
encryptBlock is called to encrypt the partition. All encrypted partitions are concatenated in order, and
the result of the concatenation is returned. Part (b) earned 4½ points.

Sample: 4C
Score: 3

In part (a) the student does not implement the method fillBlock correctly. If the variable i is greater
than or equal to the length of str, then a bounds error occurs in the substring call. Ignoring this error, if the
length of the parameter str is less than or equal to the number of cells in letterBlock, all consecutive
one-character substrings of str are correctly copied into the letterBlock array. The copying is done
in row-major order. Because null cannot be assumed to be values in the letterBlock array padding,
letterBlock is not done correctly. Part (a) earned 2 points.

In part (b) the student does not implement the method encryptMessage correctly. If the parameter
message is the empty string, nothing is returned. No partitioning of message occurs. The fillBlock
method is called correctly in each of the recursive calls to encryptMessage but always with the same
parameter. The method encryptBlock is called correctly after each call to fillBlock, but the
concatenation variable contains only the last encryption, because it is initialized before each concatenation
operation. There is no return statement. Part (b) earned 1 point.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2011 GENERAL SCORING GUIDELINES
	Nonpenalized Errors
	Minor Errors (½ point)
	Major Errors (1 point)

	2011 SCORING GUIDELINES
	Question 4: Cipher

	2011 CANONICAL SOLUTIONS
	Question 4: Cipher

	2011 SCORING COMMENTARY
	Question 4

