
AP® COMPUTER SCIENCE A
2011 GENERAL SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question-specific rubric first; the question-specific rubric always takes precedence.
Penalties: The penalty categorization below is for cases not covered by the question-specific rubric. Points can only be
deducted in a part of the question that has earned credit via the question-specific rubric, and no section may have a negative
point total. A given penalty can be assessed only once in a question, even if it occurs on different parts of that question. A
maximum of 3 penalty points may be assessed over the entire question.

Nonpenalized Errors

spelling/case discrepancies if no
ambiguity*

local variable not declared if other
variables are declared in some part

use of keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array,
String, and ArrayList, with or
without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without
parens;
e.g., new Critter;

missing () on parameter-less method
call

missing () around if/while
conditions

missing ; when majority are present

missing public on class or
constructor header

extraneous [] when referencing entire
array

[i,j] instead of [i][j]

extraneous size in array declaration,
e.g., int[size] nums = new
int[size];

Minor Errors (½ point)

confused identifier (e.g., len for
length or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use of equals or compareTo
method on primitives, e.g., int x;
…x.equals(val)

array/collection access confusion
([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

Applying Minor Penal ties
(½ point):
A minor infraction that occurs
exactly once when the same
concept is correct two or
more times is regarded as an
oversight and not penalized.
A minor penalty must be
assessed if the item is the
only instance, one of two,
or occurs two or more
times.

Major Errors (1 point)

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of
variable identifier; e.g., Bug.move()
instead of aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by
parameter)

use of class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be
unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a counterexample, note that if
a student declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the
reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2011 SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: Attractive Critter (GridWorld)

Class: AttractiveCritter 9 points

Intent: Define extension to Critter class that relocates all other actors closer to itself

 +1 Properly formed class header for AttractiveCritter that extends Critter class

+2½ Override Critter methods and maintain all postconditions
+1 Overrides at least one method of Critter and satisfies all postconditions

(point not awarded if also overrides act method)
+½ Overrides getActors
+1 Overrides processActors

+5½ Move other actors in grid to be closer to self
+1 Considers all other actors in grid
+½ Checks for an empty movement destination
+1½ Moves an actor

+½ Moves at least one other actor to different location in grid
+1 Moves another actor and guards against inappropriate self-movement

+1½ Determines correct direction and location
+½ Determines correct direction toward self for at least one other actor
+1 Determines adjacent location to at least one other actor

(point awarded only if calculated direction is used as parameter)
+1 Moves all other actors to calculated destinations

Question-Specific Penalties

 –1 Inappropriate state change in world (Grid, Actor, …)

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 2: Attractive Critter (GridWorld)

Solution that checks for self in getActors
public class AttractiveCritter extends Critter {
 public ArrayList<Actor> getActors() {
 ArrayList<Actor> actors = new ArrayList<Actor>();
 for (Location loc : getGrid().getOccupiedLocations()) {
 if (!loc.equals(this.getLocation())) {
 actors.add(getGrid().get(loc));
 }
 }
 return actors;
 }

 public void processActors(ArrayList<Actor> actors) {
 for (Actor a : actors) {
 int direction =

(a.getLocation()).getDirectionToward(this.getLocation());
 Location newLoc = (a.getLocation()).getAdjacentLocation(direction);
 if (getGrid().get(newLoc) == null) {
 a.moveTo(newLoc);
 }
 }
 }
}

Solution that checks for self in processActors
public class AttractiveCritter extends Critter {
 public ArrayList<Actor> getActors() {
 ArrayList<Actor> actors = new ArrayList<Actor>();
 for (Location loc : getGrid().getOccupiedLocations()) {
 actors.add(getGrid().get(loc));
 }
 return actors;
 }

 public void processActors(ArrayList<Actor> actors) {
 for (Actor a : actors) {
 if (a != this) {
 int direction =

(a.getLocation()).getDirectionToward(this.getLocation());
 Location newLoc = (a.getLocation()).getAdjacentLocation(direction);
 if (getGrid().get(newLoc) == null) {
 a.moveTo(newLoc);
 }
 }
 }
 }
}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2011 SCORING COMMENTARY

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2

Overview

This question involved the design of a complete class within the setting of the GridWorld case study.
Students were asked to design and code the AttractiveCritter class. An attractive critter was
described as a critter that processed other actors by attempting to relocate all of the other actors in the
grid, including other attractive critters, one grid cell closer to itself in the direction specified by
getDirectionToward. The question tested class definition and construction, method implementation,
and knowledge of the GridWorld case study. Students were instructed to write the complete class,
including all instance variables and required methods. They were cautioned NOT to override the act
method nor violate any postconditions of methods in the Critter class.

Sample: 2A
Score: 8

The student earned the first 3½ points for writing a correct class heading, overriding at least one
Critter method (not act and not violating any postconditions), overriding getActors, and
overriding processActors.

This response demonstrates the advantages of using local variables and writing clear, readable code to
simplify a solution. In getActors the student identifies occupied locations and then creates and
returns an array list of the actors in those locations.

In processActors the student correctly determines the direction and location of the new destination
for each actor and then checks to be sure the location is empty before making the move. The student did
not earn the point for guarding against moving the attractive critter itself. That guard could have been
included in getActors when the array list of actors is created, or it could have been included in
processActors before the move is made. Overlooking this guard was the most frequent reason an
otherwise perfect solution dropped from a score of 9 to a score of 8.

Sample: 2B
Score: 6

The student earned 3 of the first 3½ points. There is a correct class header, an override of at least one
Critter method, and an override of processActors.

The student does not override getActors and so did not earn the “considers all actors” point. Unless
overridden, getActors returns an array list of only the neighbors of an actor rather than an array list of
all actors in the grid.

In processActors the student correctly determines the location but did not earn the ½ point for
direction because getDirectionToward is not called on a location. The response earned ½ point for
an empty destination check. It also earned 1½ points for moving the actor to a new location in the grid,
even though direction is not perfect. There is no guard against moving the attractive critter itself, so the
student did not earn that point. This response earned a total of 6 points.

AP® COMPUTER SCIENCE A
2011 SCORING COMMENTARY

Question 2 (continued)

Sample: 2C
Score: 2.5 (rounded to 3)

The student earned the first 3½ points for writing a correct class heading, overriding at least one
Critter method (not act and not violating any postconditions), overriding getActors, and
overriding processActors. These points address the design issues of what is necessary for this class
and can be earned even if no implementation is included within the methods.

The student includes implementation code but earned no additional points. In getActors the student
attempts to create an array list of all actors in the grid but uses incorrect method calls and does not get the
actor at each location. There is an attempt in processActors to identify the direction and location of
the destination, but these are Location methods and need to be called on the actor’s location. Owing
to these incorrect calls, the student did not earn the points for checking for an empty destination,
guarding against moving self, and moving one or all actors to a location.

There was a 1-point penalty for inappropriate state change based on the call to setDirection.
Moving an attractive critter in a specified direction does not mean the critter turns to face that direction.
The score was calculated as 3½ points minus 1 point for a score of 2½ points, which was rounded up to
3 points.

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® COMPUTER SCIENCE A
	2011 GENERAL SCORING GUIDELINES
	Nonpenalized Errors
	Minor Errors (½ point)
	Major Errors (1 point)

	2011 SCORING GUIDELINES
	Question 2: Attractive Critter (GridWorld)

	2011 CANONICAL SOLUTIONS
	Question 2: Attractive Critter (GridWorld)

	2011 SCORING COMMENTARY
	Question 2

