AP ${ }^{\circledR}$ CALCULUS AB 2011 SCORING GUIDELINES

Question 6

Let f be a function defined by $f(x)= \begin{cases}1-2 \sin x & \text { for } x \leq 0 \\ e^{-4 x} & \text { for } x>0 .\end{cases}$
(a) Show that f is continuous at $x=0$.
(b) For $x \neq 0$, express $f^{\prime}(x)$ as a piecewise-defined function. Find the value of x for which $f^{\prime}(x)=-3$.
(c) Find the average value of f on the interval $[-1,1]$.
(a) $\lim _{x \rightarrow 0^{-}}(1-2 \sin x)=1$
$\lim _{x \rightarrow 0^{+}} e^{-4 x}=1$
$f(0)=1$
So, $\lim _{x \rightarrow 0} f(x)=f(0)$.
Therefore f is continuous at $x=0$.
(b) $f^{\prime}(x)= \begin{cases}-2 \cos x & \text { for } x<0 \\ -4 e^{-4 x} & \text { for } x>0\end{cases}$
$-2 \cos x \neq-3$ for all values of $x<0$.
$-4 e^{-4 x}=-3$ when $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)>0$.
Therefore $f^{\prime}(x)=-3$ for $x=-\frac{1}{4} \ln \left(\frac{3}{4}\right)$.
(c) $\int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x$ $=\int_{-1}^{0}(1-2 \sin x) d x+\int_{0}^{1} e^{-4 x} d x$
$=[x+2 \cos x]_{x=-1}^{x=0}+\left[-\frac{1}{4} e^{-4 x}\right]_{x=0}^{x=1}$
$=(3-2 \cos (-1))+\left(-\frac{1}{4} e^{-4}+\frac{1}{4}\right)$

Average value $=\frac{1}{2} \int_{-1}^{1} f(x) d x$

$$
=\frac{13}{8}-\cos (-1)-\frac{1}{8} e^{-4}
$$

2 : analysis

$3:\left\{\begin{array}{l}2: f^{\prime}(x) \\ 1: \text { value of } x\end{array}\right.$
$4:\left\{\begin{array}{l}1: \int_{-1}^{0}(1-2 \sin x) d x \text { and } \int_{0}^{1} e^{-4 x} d x \\ 2: \text { antiderivatives } \\ 1: \text { answer }\end{array}\right.$

Work for problem 6(a)
To be continuous
i) $f(0)=1$
ii)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} 1-2 \sin x & =\lim _{x \rightarrow 0^{+}} e^{-4 x} \\
\quad 1 & =1 \quad \therefore \lim _{x \rightarrow 0^{-}} f=\lim _{x \rightarrow 0^{+}} f \\
\therefore \lim _{x \rightarrow 0} f & =1
\end{aligned}
$$

iva) $f(0)=\lim _{x \rightarrow 0} f=1$
$\therefore f$ is continuous for all values of X.

Work for problem 6(b)

$$
\begin{gathered}
f^{\prime}(x)= \begin{cases}-2 \cos x, & x<0 \\
-4 e^{-4 x}, & x>0\end{cases} \\
f^{\prime}(x)=-3
\end{gathered}
$$

-Snce-2cosx oscillates between -2 and 2 there will be Ho such value in this function such that $f^{\prime}(x)=-3$

Put $f^{\prime}(x)=-3$

$$
\begin{aligned}
& -4 e^{-4 x}=-3 \\
& e^{-4 x}=3 / 4 \\
& -4 x=\ln \left(\frac{3}{4}\right) \quad \therefore x=\frac{-1}{4} \ln \left(\frac{3}{4}\right) \therefore f^{\prime}\left(-\frac{1}{4} \ln \left(\frac{3}{4}\right)\right)=-3
\end{aligned}
$$

Work for problem 6(c)

$$
\begin{aligned}
\text { fang } & =\frac{1}{1+1} \cdot \int_{-1}^{1} f(x) d x \\
& =\frac{1}{2}\left[\int_{-1}^{0} 1-2 \sin x d x+\int_{0}^{1} e^{-4 x} d x\right] \\
& =\frac{1}{2}\left[[x+2 \cos x]_{-1}^{0}+\left[\frac{-1}{4} e^{-4 x}\right]_{0}^{1}\right] \\
& \frac{1}{2}\left[2+1-2 \cos (-1)+\frac{-e^{-4}}{4}+\frac{1}{4}\right] \\
& =\frac{-[3-2 \cos (-1)]+\left[\frac{-1}{4 e^{4}}+\frac{1}{4}\right]}{2}
\end{aligned}
$$

Work for problem 6(a)

$$
\begin{gathered}
1-2 \sin x=e^{-4 x} \\
e^{-4(0)}=(1) \operatorname{ant} 1-2 \sin (0)=1-0=(1) \\
\text { They're both }=1 \text { @ } x=0 \text {, there Gore } \\
\text { they're continuous. }
\end{gathered}
$$

Work for problem 6(b)
$f^{\prime}(x)= \begin{cases}-2 \cos x & \text { for } x<0 \\ -4 e^{-4 x} & \text { for } x>0\end{cases}$

$$
-3=-2 \cos x
$$

$$
\frac{2}{3}=\cos x
$$

$$
x=\cos ^{-1} \frac{2}{3}
$$

Work for problem 6(c)

$$
\begin{aligned}
& \frac{1}{2}\left(\int_{-1}^{0} 1-2 \sin x d x+\int_{0}^{1} e^{-4 x} d x\right) \\
& \left(\left.(x+2 \cos x)\right|_{-1} ^{0}\right)+\left(-\left.\frac{1}{4} e^{-4 x}\right|_{0} ^{1}\right) \\
& (0+2 \cos 0)-(-1+2 \cos -1)+\frac{-1}{4 e^{4}}+\frac{1}{4} \\
& 2+1-2 \cos (-1)+\frac{-1}{4 e^{4}}+\frac{1}{4}
\end{aligned}
$$

Work for problem 6(a)

$$
\begin{gathered}
1-2 \sin x=e^{-4 x} \\
1-2 \sin (0)=e^{-4(0)} \\
1=1
\end{gathered}
$$

$$
\begin{aligned}
& p^{\prime}(x)=\left\{\begin{array}{l}
-2 \cos x \\
-4 e^{-4 x} \\
-4 e^{-4 x}
\end{array}\right) \quad-3 \\
& e^{-4 x}=\frac{\ln \frac{3}{4}}{4} \\
&-4 x=\ln \frac{3}{4}
\end{aligned}
$$

Work for problem 6(c)

$$
\frac{f(1)-f(-1)}{1+1}=\frac{e^{-4}-2 \sin 1-1}{2}
$$

AP ${ }^{\oplus}$ CALCULUS AB
 2011 SCORING COMMENTARY

Question 6

Overview

This problem defined the function f using one expression for $x \leq 0$ and a different expression for $x>0$. Part (a) asked whether f is continuous at $x=0$. Students needed to acknowledge that the left- and right-hand limits as $x \rightarrow 0$ and the value $f(0)$ all agree. Part (b) asked for a piecewise expression for $f^{\prime}(x)$ and the value of x for which $f^{\prime}(x)=-3$. This involves taking the symbolic derivatives of the branches of f and recognizing which piece produces a value of -3 . Part (c) asked for the average value of f on the interval $[-1,1]$. The required integral must be split at 0 to use the antiderivatives of the two branches of f.

Sample: 6A
 Score: 9

The student earned all 9 points.

Sample: 6B
 Score: 6

The student earned 6 points: 1 point in part (a), 2 points in part (b), and 3 points in part (c). In part (a) the student begins the analysis of continuity by looking at the functional values on each side of 0 . The student does not use limits and does not consider $f(0)=1$, thus earning only 1 of the possible 2 points. In part (b) the student presents a correct piecewise derivative, so the first 2 points were earned. The student's value of x is incorrect. In part (c) the student earned the first 3 points. The student does not multiply by $\frac{1}{2}$, so the answer point was not earned.

Sample: 6C

Score: 3

The student earned 3 points: 1 point in part (a), 2 points in part (b), and no points in part (c). In part (a) the student begins the analysis of continuity by looking at the functional values on each side of 0 . The student does not use limits and does not consider $f(0)=1$, thus earning only 1 of the possible 2 points. In part (b) the student does not give a correct piecewise presentation for $f^{\prime}(x)$ and so earned 1 of the possible 2 points for $f^{\prime}(x)$. The student finds the correct value of x and earned the third point in part (b). In part (c) the student's work is incorrect.

