AP ${ }^{\circledR}$ CALCULUS AB 2011 SCORING GUIDELINES

Question 4

The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.
Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$.
Justify your answer.

Graph of f
(d) Find the average rate of change of f on the interval
$-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.
(a) $g(-3)=2(-3)+\int_{0}^{-3} f(t) d t=-6-\frac{9 \pi}{4}$
$g^{\prime}(x)=2+f(x)$
$g^{\prime}(-3)=2+f(-3)=2$
(b) $g^{\prime}(x)=0$ when $f(x)=-2$. This occurs at $x=\frac{5}{2}$.
$g^{\prime}(x)>0$ for $-4<x<\frac{5}{2}$ and $g^{\prime}(x)<0$ for $\frac{5}{2}<x<3$.
Therefore g has an absolute maximum at $x=\frac{5}{2}$.
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign only at $x=0$. Thus the graph of g has a point of inflection at $x=0$.
(d) The average rate of change of f on the interval $-4 \leq x \leq 3$ is $\frac{f(3)-f(-4)}{3-(-4)}=-\frac{2}{7}$.
To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4<x<3$. However, f is not differentiable at $x=-3$ and $x=0$.
$3:\left\{\begin{array}{l}1: g(-3) \\ 1: g^{\prime}(x) \\ 1: g^{\prime}(-3)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } g^{\prime}(x)=0 \\ 1: \text { identifies interior candidate } \\ 1: \text { answer with justification }\end{array}\right.$
$1:$ answer with reason
$2:\left\{\begin{array}{l}1: \text { average rate of change } \\ 1: \text { explanation }\end{array}\right.$

NO CALCULATOR ALLOWED

Graph of f

$$
\begin{aligned}
& \begin{array}{r}
\text { Work for problem 4(b) } \quad g^{\prime}(x)=0 \quad 2+f(x)=0 \\
g^{\prime(x)}=0
\end{array} \\
& \frac{++t+\cdots-1 / 2}{5 / 2} \\
& x=5 / 2 \\
& \begin{array}{l}
x=5 / 2 \text {, because } 9^{\prime} \\
\text { going from t te - proves it as the only }
\end{array} \\
& \text { relative maximum and } g(5 / 2)^{5} \text { is greater } g(3)=6+\int_{0}^{3} f(t) d t / 6
\end{aligned}
$$ than g at either endpoint.

$\begin{array}{r}\text { Work for problem } 4(x) \\ f^{\prime}(x)\end{array} \quad g^{\prime \prime}(x)=d / d x(g(x))=f^{\prime}(x)$

The only point of inflection for 9 is at $x=0$, since $f^{\prime}(x)$, which is equivalent to $g^{\prime \prime}$, only changes signs at $x=0$ on the interval $-4 \leqslant x \leqslant 3$

Work for problem 4(d).
Avg. Rate if change $=\frac{f(3)-f(-4)}{3--4}$

$$
=\frac{-3--1}{3+4}=\frac{-2}{7}
$$

Because Mean value Theorem only applies when the function is continuous AND differentiable on the interval, which doesnit apply here since $f(*)$ isn't differentiable $a+\quad x=0$.

Graph of f

Work for problem 4(b)
absolule maximum canke found by sguawng the denvate of of to zero $g^{\prime}(x)=2+f(x)=0$
$-2=f(t)$
ghas an absolute maxmum when $x=2.5$.
$\begin{array}{lllllll}4 & \mathbf{4} & \mathbf{4} & \underset{\text { no }}{\mathbf{4}} \mathbf{4} \quad \mathbf{4} \text { Calculator allowed }\end{array}$

Work for problem 4(c)
where has a pant of infection = when $g^{\prime \prime}(x)$ is zen.
$\dot{g}(x)=2+f(x)$ so when the f is expenenamg (or changer signs).
$f^{\prime \prime}(x)=f^{\prime}(x)$. its maximum.

$$
0=f^{\prime}(x)
$$

ghas posits of inflection unen
x is equal to $-4,0$, and -3 .
becalise
F the pant of inflection ir found when the second demure equal porawe

A" (x) ertuled op hate $f^{\prime(t)}$.
1 equated $f^{\prime}(t)$ to zero, When the funcricnis waccise experenang it pants of miffecten, the second dent, $=0$.
$\therefore 1$ found x valuer tore $-4,0$, and 3

Work for problem 4(d) the average rave of change

$$
\frac{f(3)-f(-4)}{3--4}=\frac{-3++1}{7}=\frac{-2}{7}
$$

the average rake of change is $\frac{-2}{7}$
the mean value theoum stairs
inthefunchan,

1. if culvalue of y acoffencintribe mise clued interval [abb]
2. If aus calve of x is continuous sh the open minted (a, b)
then there exist a value function, $f(c)=\frac{f(b+f(a)}{b-a}$.

However, f does not meet the requicirents of the mean lave theacm because it is not differentiable when $x=0$.

NO CALCULATOR ALLOWED

Graph of f

Work for problem 4(c)
$g^{\prime \prime}(x)=0$ mems their's aninflecthon point

$$
\begin{aligned}
g^{\prime \prime}(x) & =f^{\prime}(x) \\
0 & =F^{\prime}(x)
\end{aligned}
$$

So spots where slope $f(x)=0$ or D.JE, the only suck spot aces at $x=0$

$$
\text { and at } x=-3 \text { when e it's unclerinete }
$$

\square

$$
\begin{aligned}
& \frac{1}{7}\left[\frac{1}{4} \pi+\frac{2}{4} \pi+9\right] \\
& \frac{1}{7}\left[\frac{10}{4} \pi+9\right]-\cos 0 \operatorname{cos+c} \cos \operatorname{con} g e
\end{aligned}
$$

$$
\begin{aligned}
& \text { eguarter circle } \\
& \text { 1:\% a triangle } \\
& \begin{array}{c}
\substack{=\\
A=(3) 6) \\
A=9}
\end{array}
\end{aligned}
$$

AP ${ }^{\oplus}$ CALCULUS AB
 2011 SCORING COMMENTARY

Question 4

Overview

This problem provided the graph of a continuous function f, defined for $-4 \leq x \leq 3$. The graph consisted of two quarter circles and one line segment. The function g is defined by $g(x)=2 x+\int_{0}^{x} f(t) d t$. Part (a) asked for $g(-3)$, an expression for $g^{\prime}(x)$, and the value of $g^{\prime}(-3)$. These items tested the interpretation of a definite integral in terms of the area of a region enclosed by the x-axis and the graph of the function given in the integrand, as well as the application of the Fundamental Theorem of Calculus to differentiate a function defined by an integral with a variable upper limit of integration. Part (b) asked for the x-coordinate of the point at which g attains an absolute maximum for $-4 \leq x \leq 3$. Several approaches were possible, but they all begin with identification of candidates using the expression for $g^{\prime}(x)$ found in part (a). Part (c) asked for locations of points of inflection for the graph of g, involving another analysis of $g^{\prime}(x)$. Part (d) asked for the average rate of change of f on $-4 \leq x \leq 3$, and tested knowledge of the hypotheses of the Mean Value Theorem to explain why that theorem is not contradicted given the fact that its conclusion does not hold for f on $-4 \leq x \leq 3$.

Sample: 4A
 Score: 9

The student earned all 9 points.

Sample: 4B

Score: 6
The student earned 6 points: 2 points in part (a), 2 points in part (b), no point in part (c), and 2 points in part (d). In part (a) the student makes a sign error in evaluating $g(-3)$ but correctly determines $g^{\prime}(x)$ and evaluates $g^{\prime}(-3)$, thus earning 2 of the 3 points. In part (b) the student earned the first 2 points for considering where $g^{\prime}(x)=0$ and correctly identifying 2.5 as the interior candidate for the x-coordinate of the absolute maximum. The student does not justify this as giving the absolute maximum, and so the final point in part (b) was not earned. In part (c) the student gives incorrect x-coordinates for the point of inflection. In part (d) the student's work is correct.

Sample: 4C

Score: 3

The student earned 3 points: 2 points in part (a), 1 point in part (b), no point in part (c), and no points in part (d). In part (a) the student makes a sign error in evaluating $g(-3)$ but correctly determines $g^{\prime}(x)$ and evaluates $g^{\prime}(-3)$, thus earning earned 2 of the 3 points. In part (b) the student earned the first point for $g^{\prime}(x)=0$. The student solves the equation incorrectly. In part (c) the student gives an incorrect x-coordinate for the point of inflection. In part (d) the student does not correctly compute the average rate of change and does not provide an explanation for why the Mean Value Theorem does not apply.

