The polar curve r is given by $r(\theta) = 3\theta + \sin \theta$, where $0 \leq \theta \leq 2\pi$.

(a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of r.

(b) For $\frac{\pi}{2} \leq \theta \leq \pi$, there is one point P on the polar curve r with x-coordinate -3. Find the angle θ that corresponds to point P. Find the y-coordinate of point P. Show the work that leads to your answers.

(c) A particle is traveling along the polar curve r so that its position at time t is $(x(t), y(t))$ and such that $\frac{d\theta}{dt} = 2$. Find $\frac{dy}{dt}$ at the instant that $\theta = \frac{2\pi}{3}$, and interpret the meaning of your answer in the context of the problem.

(a) Area $= \frac{1}{2} \int_{\pi/2}^{\pi} (r(\theta))^2 \, d\theta = 47.513$

(b) $-3 = r(\theta)\cos \theta = (3\theta + \sin \theta)\cos \theta$

$\theta = 2.01692$

$y = r(\theta)\sin (\theta) = 6.272$

(c) $y = r(\theta)\sin \theta = (3\theta + \sin \theta)\sin \theta$

$$\frac{dy}{dt} \bigg|_{\theta=2\pi/3} = \left[\frac{dy}{d\theta} \cdot \frac{d\theta}{dt} \right]_{\theta=2\pi/3} = -2.819$$

The y-coordinate of the particle is decreasing at a rate of 2.819.
Work for problem 2(a)

\[
\text{Area} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} r^2 \, d\theta \\
= \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (3\theta + \sin\theta)^2 \, d\theta \\
= 47.513
\]

Work for problem 2(b)

\[
\begin{align*}
\rho &= r \cos \theta \\
\rho x &= (3\theta + \sin\theta) \cos \theta \\
x &= 3\theta \\
\theta &= 2.017 \text{ radians} \\
\end{align*}
\]

The \(\phi \)-coordinate of point \(\rho = r \sin \theta \) is
\[
\begin{align*}
\rho &= (3\theta + \sin\theta) \cos \theta \\
&= 6.272
\end{align*}
\]

-6-

Continue problem 2 on page 7.
Work for problem 2(c)

\[
\frac{dy}{dt} = \frac{d}{dt} (r \sin \theta) = \frac{d}{d\theta} (r \sin \theta) \cdot \frac{d\theta}{dt} = \frac{d}{d\theta} (r \sin \theta) \cdot \frac{d\theta}{dt} = \frac{d}{d\theta} (3 \theta \sin \theta + \sin^2 \theta) \cdot \frac{d\theta}{dt} = (3 \sin \theta + 3 \theta \cos \theta + \sin 2\theta) \cdot \frac{d\theta}{dt}.
\]

\[
\frac{dy}{dt} \bigg|_{\theta = \frac{2\pi}{3}} = (3 \sin \frac{2\pi}{3} + 3(\frac{2\pi}{3}) \cos \frac{2\pi}{3} + \sin \frac{4\pi}{3}) \cdot 2 = -2.819.
\]

\(y\) is positive at the instant \(\theta = \frac{2\pi}{3}\) and \(\frac{dy}{dt}\) is negative at the instant \(\theta = \frac{2\pi}{3}\).

The particle is travelling towards the \(x\)-axis at the instant \(\theta = \frac{2\pi}{3}\).

END OF PART A OF SECTION II

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
Work for problem 2(a)

When the graph is in the II quadrant, \(\theta \in \left(\frac{\pi}{2}, \pi \right) \)

So area = \(\int_{\frac{\pi}{2}}^{\pi} r(\theta)^2 d\theta = \int_{\frac{\pi}{2}}^{\pi} \left(3\theta + 5\sin\theta \right)^2 d\theta \)

= 49.513

Work for problem 2(b)

\(r(\theta) = 3\theta + 5\sin\theta \).

Thus \(x(\theta) = (3\theta + 5\sin\theta)\cos\theta \).

\(y(\theta) = (3\theta + 5\sin\theta)\sin\theta \).

When \(x(\theta) = 3 \), \(\theta \in \left[\frac{\pi}{2}, \pi \right] \), \(\theta = 2.017 \).

\(y(\theta) = x(\theta) - \tan\theta = -3 - \tan\theta = 6.271 \).

So: \(\theta = 2.017 \).

\(y(\theta) = 6.271 \)

Continue problem 2 on page 7.
Work for problem 2(c)

\[
\frac{dy}{dt} = \frac{d}{d\theta} \left(\frac{d\theta}{dt} \right)
\]

\[
\frac{dy}{d\theta} = \frac{d}{d\theta} \left((3\theta + 5\cos\theta - 6\sin\theta) \right)
= 3\theta \cdot \cos\theta + 3\sin\theta + 2\sin\theta - (6\cos\theta)
\]

so when \(\theta = \frac{2\pi}{3} \)

\[
\frac{dy}{dt} = 2 \cdot \left[3 \cdot \frac{2\pi}{3} \cdot \left(-\frac{1}{2} \right) + 2 \cdot \frac{\sqrt{3}}{2} \cdot \left(\frac{1}{2} \right) \right]
= 2\sqrt{3} - 2\pi
\]

\(\square \) So when \(\theta = \frac{2\pi}{3} \)

\[
\frac{dy}{dt} = 2\sqrt{3} - 2\pi
\]

\(\square \) It means, when \(\theta = \frac{2\pi}{3} \), the speed of the particle on the direction \(y \) is \((2\sqrt{3} - 2\pi) \).

END OF PART A OF SECTION II
IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
Work for problem 2(a)

\[A = \int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} r^2 \, d\theta = \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (9\theta^2 + 9\sin^2 \theta + 6\theta \sin \theta) \, d\theta \]

\[= \frac{1}{2} \left(3\theta^3 + \right. \]

Work for problem 2(b)

\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[x = -3, \quad r \cos \theta = -3 \]
\[r = 3 \theta + \sin \theta \]
\[3 \theta \cos \theta + \sin \theta \cos \theta = -3 \]

\[y = \theta \tan \theta \]
Work for problem 2(c)

\[
\frac{dy}{dt} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dt}
\]

\[
\theta = \frac{2\pi}{3}
\]

\[
= (\sin \theta + r \cos \theta) \times 2
\]

\[
= (\frac{\sqrt{3}}{2} \cdot 0 - \frac{1}{2} \cdot r) \times 2
\]

\[
= \sqrt{3} - r
\]
Question 2

Sample: 2A
Score: 9

The student earned all 9 points. Because the particle is above the x-axis, it is sufficient that the student states “the particle is travelling towards the x-axis” in part (c).

Sample: 2B
Score: 6

The student earned 6 points: 2 points in part (a), 2 points in part (b), and 2 points in part (c). In part (a) the student’s integral is correct, so the first 2 points were earned. The answer is incorrect. In part (b) the student earned the equation point implicitly and earned the point for the value of θ. The student’s answer is incorrect, possibly as a result of intermediate rounding. In part (c) the student earned the first 2 points. The student does not indicate that the y-coordinate of the particle is decreasing.

Sample: 2C
Score: 4

The student earned 4 points: 2 points in part (a), 1 point in part (b), and 1 point in part (c). In part (a) the student’s integral is correct, so the first 2 points were earned. In part (b) the fourth line of the student’s solution earned the first point. In part (c) the student earned the chain-rule point.